
COHERENT RANDOMNESS TESTS AND COMPUTING THE

K-TRIVIAL SETS

LAURENT BIENVENU, NOAM GREENBERG, ANTONÍN KUČERA, ANDRÉ NIES,
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Abstract. We introduce Oberwolfach randomness, a notion within Demuth’s

framework of statistical tests with moving components; here the components’

movement has to be coherent across levels. We show that a ML-random set
computes all K-trivial sets if and only if it is not Oberwolfach random, and

indeed that there is a K-trivial set which is not computable from any Ober-

wolfach random set. We show that Oberwolfach random sets satisfy effective
versions of almost-everywhere theorems of analysis, such as the Lebesgue den-

sity theorem and Doob’s martingale convergence theorem. We also show that

random sets which are not Oberwolfach random satisfy highness properties
(such as LR-hardness) which mean they are close to computing the halting

problem.

A consequence of these results is that a ML-random set failing the effective
version of Lebesgue’s density theorem for closed sets must compute all K-

trivial sets. Combined with a recent result by Day and Miller, this gives a
positive solution to the ML-covering problem of algorithmic randomness. On

the other hand these results settle stronger variants of the covering problem

in the negative: no low ML-random set computes all K-trivial sets, and not
every K-trivial set is computable from both halves of a random set.

1. Introduction

1.1. K-triviality. Turing reducibility captures the intuitive concept of relative
information content. A set B of natural numbers is reducible to another set A,
or is computable from A, if A has at least as much information as B does. Using
this yardstick, a set is considered complicated if it is useful as an oracle, i.e. if it
computes many sets.

Algorithmic randomness gives another measure for complexity of sets. A set is
considered complicated if it is hard to detect patterns in its characteristic function:1

if it passes all effective statistical tests. A major programme in the field of algo-
rithmic randomness is to investigate the relationship between these two concepts
of complexity. Can random sets be useful as oracles? On the one hand, random
sets, lacking any pattern, should be hard to compute; but on the other, since they
mostly contain “white noise”, they should not be able to compute many sets.

The notion of compressibility is often a conduit between randomness and com-
putability. The (plain) Kolmogorov complexity Cpσq of a string σ is, roughly, the
length of the shortest computer programme which outputs σ. We say that a string
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σ is incompressible if its complexity Cpσq is close to the length of σ, which roughly
says that the only way to describe σ is by writing it down in its entirety. At the
other end of the spectrum, a string σ of length n is very compressible if it contains
no more information than the string of n zeros; that is, if its complexity is the
same as the complexity of its length, Cpσq „ Cpnq. Chaitin [7] showed that an
infinite sequence X is computable if and only if every initial segment of X is very
compressible. In this way, computability itself is characterised by compressibility.

The most useful notion of randomness, due to Martin-Löf, is not described pre-
cisely by plain complexity. Shifting to prefix-free Kolmogorov complexity K, which
is defined by using self-delimiting machines, allows us to apply measure-theoretic
tools to the study of complexity of finite strings. We then have analogous no-
tions of compressibility: a string σ is K-incompressible if Kpσq „ |σ|, and very
K-compressible if Kpσq „ Kp|σ|q. Schnorr ([47], see [6]) showed that an infinite se-
quence X is ML-random if and only if each initial segment of X is K-incompressible.
Solovay, on the other hand, showed that Chaitin’s theorem does not hold for K:
there are non-computable sequences X, all of whose initial segments are very K-
compressible. He called these sequences K-trivial. These are the sequences that
are as far from being random as possible.

The K-trivial sets turned out to be in central to the investigations into the inter-
actions between computability and randomness. One example is related to an early
result of Kučera’s [29]: every ML-random set which is ∆0

2-definable (equivalently,
is computable from the halting problem H1) is Turing above a non-computable,
computably enumerable set. This is surprising: in general, computably enumerable
(c.e.) sets are very far from random and one would expect there is no interaction
between these sets and random sets. Kučera’s result, though, gives an example of
precisely such an interaction. Hirschfeldt, Nies and Stephan [25] showed that the
c.e. sets given by Kučera’s argument, in the case that the random set is incomplete,
must be K-trivial.

A hint that K-triviality is related to computable enumerability was first given
by Chaitin [8], who showed that all K-trivial sets are ∆0

2. Nies [40] extended this
result significantly by showing that every K-trivial set is computable from a c.e.
K-trivial set. Thus, K-trivial sets are inherently enumerable, and unlike random
sets, cannot be constructed by a forcing argument. Nies’s result was a corollary to
a deep investigation of K-triviality (initiated in [15] and performed in [40]) which
clarified the central role played by K-trivial sets. Nies showed that the K-trivial
sets are computationally weak, and that they can be characterised by a variety
of concepts, beyond compressibility. For example, the K-trivial sets are precisely
those which are low for ML-randomness: the sets which cannot detect any patterns
in (and thus derandomise) ML-random sets.

The result by Hirschfeldt, Nies and Stephan mentioned above did not pertain
only to Kučera’s construction: they showed that if Y is any ML-random set which
is Turing incomplete (i.e. does not computeH1) then every c.e. set computable from
Y is K-trivial. In light of this work, Stephan asked whether the converse holds:

Is every K-trivial set computed by a ML-random set that is Turing
incomplete?

The inherent enumerability of K-triviality implies that this is indeed a converse
to the Hirschfeldt-Nies-Stephan result. Miller and Nies [36, 4.6] included this ques-
tion, which became known as the ML covering problem, as one of the four major
questions in their 2006 survey of open problems in algorithmic randomness. Com-
bining the work in this paper with a recent result by Day and Miller [9] (obtained
after the research described here was done) gives the affirmative solution to the
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problem (see [1]). However, we also show here that any ML-random set computing
all K-trivial sets must be very close to being Turing complete.

1.2. Oberwolfach randomness. The main tool in our investigations is a random-
ness notion slightly stronger than Martin-Löf’s. We call this notion Oberwolfach
randomness in appreciation of our two-week Research in Pairs stay at the Mathe-
matisches Forschungsinstitut Oberwolfach in early 2012, where this research began.

Recall that a Martin-Löf test is a sequence xUmy of uniformly effectively open sets
such that λpUmq ď 2´m for each m P ω. A set Z Ď ω fails the test if Z P

Ş

m Um,
otherwise Z passes the test. Demuth [10] introduced the idea of increasing the
power of a ML-test by allowing a computably bounded number of changes to the
whole Σ0

1 set Um (see [33] for background). Oberwolfach tests use this idea, but
in a very restricted fashion. The changes of components of the test have to be
coherent across the levels of the test. Every two successive changes in Um`1 must
be accompanied by a change in Um.

Oberwolfach randomness fits into another framework for extending Martin-Löf
randomness. Weak 2 randomness is defined by tests xUny which are uniformly c.e.,
but for which the requirement λpUnq ď 2´n is replaced by limn λpUnq “ 0. Restric-
tions on the rate of convergence of λpUnq to 0 yield notions of randomness between
ML-randomness and weak 2 randomness. Tests in which the rate of convergence is
controlled by some left-c.e. real determine Oberwolfach randomness. In Section 2
we give another class of tests which determine the same notion of randomness.

While these two definitions of Oberwolfach randomness fit naturally into these
schemes, it is a variety of properties of this notion which make it useful. Chief
among them is that it is the notion of randomness which describes computing all
K-trivial sets. We show:

Theorem 1.1. If Z is ML-random but not Oberwolfach random, then Z computes
every K-trivial set.

Theorem 1.2. There is a K-trivial set which is not computable from any Ober-
wolfach random set.

Thus a ML-random set Z is Oberwolfach random if and only if it fails to compute
some K-trivial set; and the K-trivial set A given by Theorem 1.2 has the property
that any ML-random set computing A must compute all K-trivial sets. We call
such a set A a “smart” K-trivial set. The smart K-trivial set shows that a positive
solution to the covering problem must be strong in that it would give a single
incomplete random set computing all K-trivial sets. We prove Theorems 1.1 and 1.2
in Section 4.

1.3. Randomness and analysis. Demuth (again see [33] for background) started
the program of analyzing how much randomness of a real z is needed to make
effective functions of a certain type differentiable at z, when we know classically
that they are differentiable at almost every real. In full generality, this program tries
to identify the randomness strength needed to make effective versions of “almost-
everywhere” theorems hold, such as ergodic theorems. A goal is to characterize
known randomness notions by effective versions of classical theorems of analysis.
Recent activity followed Demuth’s original question; see for example [5, 46]. In this
paper we relate Oberwolfach randomness to three almost-everywhere theorems:
differentiability of monotone functions, martingale convergence and the Lebesgue
density theorem.

Let λ denote Lebesgue measure on R. For measurable sets P,A Ď R with A
non-null, λpP |Aq “ λpP X Aq{λpAq is the conditional measure (probability) of P



4 BIENVENU, GREENBERG, KUČERA, NIES, AND TURETSKY

given A. The lower density of a measurable set P Ď R at a point z P R is

ρpP |zq “ lim inf
hÑ0

tλpP |Iq : I is an open interval, z P I & |I| ă hu .

Intuitively, ρpP |zq gauges the fraction of space filled by P around z if we “zoom
in” arbitrarily close to z.

Lebesgue’s density theorem [34, p. 407] says that for any measurable set P , for
almost all z P P we have ρpP |zq “ 1. An effective version of this theorem is
given by identifying a collection of effectively presented sets P and the collection of
random points z for which ρpP |zq “ 1 for all sets P in the collection containing z as
an element. Since the theorem is immediate for open sets, the simplest nontrivial
effective version is obtained by choosing P to range over the collection of effectively
closed subsets of R. We call a real number z P R a density-one point if for every
effectively closed set P containing z we have ρpP |zq “ 1.

In Section 5 we prove:

Theorem 1.3. Every Oberwolfach random set is a density-one point.

1.4. Randomness enhancement. The randomness enhancement principle [43]
states that beyond Martin-Löf, randomness strength corresponds inversely to prox-
imity to H1. That is, among the ML-random sets, failing stronger randomness
properties means being closer to being Turing complete. Being a density-one point
(in conjunction with ML-randomness) is a randomness property which turns out
to be strictly stronger than ML-randomness. An instance of the randomness en-
hancement principle is Theorem 1.1. As a direct corollary of Theorems 1.1 and 1.3
we obtain:2

Theorem 1.4. A Martin-Löf random set which is not a density-one point computes
every K-trivial set.

Day and Miller [9] constructed an incomplete ML-random real z which is not
a density-one point. Theorem 1.4 says that z computes all K-trivial sets, thereby
giving a positive answer to the ML-covering problem. We remark that the notion of
density plays an even greater role in the proof of the Day-Miller theorem. Franklin
and Ng introduced a notion of randomness called difference randomness and showed
that this notion is equivalent to being ML-random and incomplete. A result of
Bienvenu, Hölzl, Miller and Nies [2] says that a ML-random real z is difference
random if and only if ρpP |zq ą 0 for all effectively closed sets P containing z. Day
and Miller’s construction produced a ML-random set with the latter property, and
they use the Franklin-Ng and the Bienvenu-Hölzl-Miller-Nies results to conclude
that the set they produced is Turing incomplete.

Recall that an oracle Y P 2ω is LR-hard if every set which is ML-random relative
to Y is 2-random, i.e., random relative to H1. Intuitively, such an oracle is “nearly”
Turing complete. An instance of a formulation of this intuition is Cole and Simp-
son’s result [49] that every LR-hard set is superhigh (H2 ďtt Y

1). A lower bound
on the complexity of a solution to the covering problem is given by the following
result, which is yet another instance of the randomness enhancement principle.

Theorem 1.5. Every ML-random set which is not Oberwolfach random is LR-hard.

We prove Theorem 1.5 in Section 3, where we give another indication that ML-
random sets which are not Oberwolfach random are close to being Turing complete,
using traceability (Theorem 3.2).

2We note though, that after learning about Theorem 1.4, Miller gave a direct proof; see [2].
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1.5. Strong variants of the covering problem. As a second part of his question,
Stephan also asked (see [36, 4.6]) whether every K-trivial set is computable from a
low ML-random set. Further evidence for the plausibility of the existence of such
a set was later given by Kučera and Slaman [30] who showed that there is a low
PA-complete set which computes all K-trivial sets. Our results now answer this
question in the negative: A LR-hard set (alternatively, a JT-hard set) cannot be
low, and so the smart K-trivial set given by Theorem 1.2 gives the negative answer
to Stephan’s question:

Theorem 1.6. There is a K-trivial set which is not computable from any low
ML-random set.

We also answer in the negative another strong variant of the ML-covering ques-
tion ([36, 4.7], which is related to a question asked by Kučera in 2005). By the
halves of a set X we mean the sets X0 and X1 where X “ X0 ‘ X1; that is, the
bits in the even and the bits in the odd positions. In [17], Figueira et al. show that
for any ML-random set X, at least one of the halves X0 or X1 is balanced random,
and hence Oberwolfach random. Again with Theorem 1.2 we obtain:

Theorem 1.7. There is a K-trivial set which is not computable from both halves
of any random set.3

1.6. Questions, and further work. The ML covering problem is now solved,
but the work described suggests possibly more fundamental questions. The char-
acterisation of density-one points within the random reals is still open, as is their
relationship to LR-hardness. For example, we ask:

‚ Is there a density-one ML random point which is not Oberwolfach random?
‚ Is there an LR-hard Oberwolfach random set?

Since this work was done, further work by Andrews, Cai, Khan, Lempp and
Miller, and later Miyabe, Nies and Zhang [39] has shed more light on analytic
properties of random sets such as martingale convergence and density.

Later work by Greenberg, Miller and Nies gives a characterisation of those K-
trivial sets which are computable from both halves of a random set; for example,
they show that the random set can always be taken to be Chaitin’s Ω, and so these
sets form an ideal.

2. Characterizations of Oberwolfach randomness

Recall that a Gδ set is the intersection
Ş

Un of a nested sequence xUny of open
sets; nested means that Un`1 Ď Un. The Gδ set is null if and only if limλpUnq “ 0.
There are two ways to measure the complexity of such null sets.

‚ Via definability: an effectiveness condition is placed on the sequence xUny.
In all cases we are concerned with, this results in the intersection being Π0

2

(effectively Gδ). Most commonly the sequence xUny is uniformly Σ0
1 (effec-

tively open), but it is possible to relax this condition; indeed sometimes the
sets Un may not be open.

‚ By calibrating the speed of convergence of λpUnq to zero. The most common
way is to require that λpUnq ď 2´n.

We say that a sequence Z is captured by a test xUny if Z P
Ş

Un. Otherwise it
passes the test. Because the test is nested, this passing condition is equivalent to
Solovay’s notion of escaping co-finitely many test components Un.

3The referee points out that LR-hardness can be used to give another proof of Theorem 1.7.
Let A be a smart K-trivial set, and let X be random. If A ďT X0 then X0 is LR-hard, whence X1

is 2-random, and so does not compute A.
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If C is a countable collection of tests, then we say that a real is C-random if it
passes every test in C. For example, a difference test (Franklin and Ng [19]) is a
nested sequence of classes Un “ Am X B (with λpUnq ď 2´n), where the sequence
xAmy is uniformly Σ0

1 (effectively open) and the class B is Π0
1 (effectively closed). A

real is difference random if it passes every difference test. Oberwolfach randomness
implies difference randomness and is very close to, but distinct from, difference
randomness.

The statistical tests that define Oberwolfach randomness can be presented in a
variety of ways.

(1) Oberwolfach tests are a “coherent” form of the balanced tests introduced
in [17].

(2) Interval tests are uniformly Σ0
1 classes indexed by rational intervals with

certain measure and monotonicity conditions, and a left-c.e. real picking
the Σ0

1 classes that have to be avoided.
(3) Left-c.e. bounded tests are Π0

2 (effectively Gδ) null classes of the form
Ş

n Vn, where the convergence to 0 of λpVnq is quantified by an additive
cost function.

In this section we introduce the three test notions and show they all determine
the same randomness class. Each of the three test concepts is intended for a different
type of application. (1) is used to build the smart K-trivial set. (2) is mainly needed
for the application to differentiability and density; in particular, for showing that
effectively closed sets have density one at Oberwolfach random points. (3) is useful
to show that any ML-random set that is not Oberwolfach random is close to being
Turing complete, and to show that every such random set computes all K-trivial
sets. We now put some work into introducing these test notions and showing that
they are equivalent. Their conceptual closeness to the intended applications will
make that work pay off later on.

Remark 2.1. We will work in three computable (metric) measure spaces: Cantor
space 2ω, the unit interval r0, 1s, and sometimes the real line R. The equivalence
of the first two is given by a the “near isomorphism” Θ: 2ω � r0, 1s given by
ΘpZq “

ř

năω Zpnq2
´n´1. The map Θ is computable, continuous and closed, is

measure-preserving, and injective when restricted to infinite, co-infinite sets (with
image containing all irrational numbers in the unit interval). If ΘpZq “ z we say
that Z is a binary expansion of z.

A randomness notion can be defined in any of these spaces, and will usually
be invariant. For example, a ML-test is a sequence xUny of uniformly effectively
open sets with λpUnq ď 2´n. This definition makes sense in Cantor space, the
unit interval and the real line, and so we get a notion of ML-randomness in each
of these spaces. Because Θ is computable and measure-preserving, if xUny is a
ML-test in the unit interval, then

@

Θ´1Un
D

is a ML-test in Cantor space. In the
other direction, let R be the set of sequences in Cantor space which are eventually
constant. Then Θæ2ωzR is an open map. If xVny is a ML-test in Cantor space, then
xΘrVnzRsy is a ML-test in the unit interval. Since ΘrRs is the set of binary rational
numbers, none of which are ML-random, altogether we see that for all Z P 2ω, Z
is ML-random if and only if ΘpZq is ML-random.

We take the same approach when defining Oberwolfach randomness. The test
notions we introduce below make sense in every computable probability space, and
the argument above will show that for all Z P 2ω, Z is Oberwolfach random if and
only if ΘpZq is Oberwolfach random.

2.1. Oberwolfach tests. We introduce tests which are a special case of weak limit
tests (and in fact weak Demuth tests); see for instance [32]. In this context, we
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require that λpUnq ď 2´n, but the sequence xUny need not be given effectively. Let
xWeyeăω be an effective list of all Σ0

1 classes. We are interested in tests of the form
@

Wfpnq

D

, where f ďT H
1.

A computable approximation xfsy for f gives an approximation for the test. We
write:

‚ Unxsy “ Wpď2´n
q

fspnq
, where Wpďεq

e is the result of enumerating We up to the

point at which its measure reaches ε; and

‚ Unrss “ Un,sxsy “Wpď2´n
q

fspnq,s
, where We,s is the clopen set which is the result

of enumerating We for s steps.

The set Unxsy is called a version of Un. We can require that at every stage s,
Un`1xsy Ď Unxsy. We say that the version of Un changes at a stage s if fspnq ‰
fs´1pnq. We write, though, Unxs´ 1y ‰ Unxsy in this event, even if it is not
technically true. That is, a version changes if its description (its index) changes,
even if extensionally, the Σ0

1 classes described are the same.
To be pedantic, the test xUny does not contain all the information above; different

choices of f and of the approximation xfsy for f may yield the same test. Below,
we always assume that a test comes with its approximation.

For background, we recall the following.

Definition 2.2. A test xUny “
@

Wfpnq

D

is a weak Demuth test if the index function
f is ω-c.a.: the number of stages s at which the version Unxsy of Un changes is
bounded by a computable function. If this computable bound is Op2nq, then the
test is called a balanced test [17].

In [17, Rmk. 18] it is shown that imposing the bound 2n on the number of version
changes of the n-th component results in the same notion of randomness, balanced
randomness.

An Oberwolfach test is a balanced test for which the changes are coherent be-
tween the levels.

Definition 2.3. A weak Demuth test xUny is an Oberwolfach test if for all n, for
every interval I of stages, if Unxsy is constant on I, then there is at most one stage
s in I at which Un`1xsy changes.

It is easily observed that every Oberwolfach test is a balanced test. Hence:

Proposition 2.4. Every balanced random set is Oberwolfach random.

The notions do not coincide: in [17] the authors construct a low ML-random
set which is not balanced random. Such a set must be Oberwolfach random by
Theorem 1.5 below.

Franklin and Ng [19] showed that difference randomness is also captured by the
class of “version-disjoint” weak Demuth tests. In fact, these tests are naturally
Oberwolfach tests. To wit, if Z is ML-random and not difference random, then
it is Turing complete. So it computes Chaitin’s complete random set Ω. Let
Γ be a Turing functional such that ΓpZq “ Ω. By a result of Levin [35], and
Miller and Yu [37] (also see [41, Prop. 5.1.14]), there is a constant c such that
2´m ě λtZ : Ωæm`c ă ΓpZqu for each m. The version-disjoint weak Demuth test
capturing Z defined by Franklin and Ng is defined by letting

Umxsy “ tZ : Ωs æm`c ă ΓpZqupď2´n
q.

This test is in fact an Oberwolfach test, since two changes in Ωt æn`1 necessitate
a change in Ωt æn. To sum up, difference randomness is captured by so-called
“version-disjoint” Oberwolfach randomness. Hence:
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Proposition 2.5. Every Oberwolfach random set is difference random.

The notions do not coincide. This follows from Day and Miller’s construction [9]
of a difference random real which is not a density-one point. Theorem 1.3 shows
this real is not Oberwolfach random.

Below, when considering an Oberwolfach test, we often assume without further
mention that U0xsy never changes (we can simply start the test late enough). Also
note that by delaying enumerations, we may assume that for all s, for all n ě s,
Unrss “ H.

2.2. Interval tests. The very general notion of a statistical test that we defined
can be in fact further generalised, by replacing the natural numbers by indices
coming from some partial ordering, and slightly less generally, from a filter in
a separative partial ordering. To avoid excess abstraction, we consider a useful
collection of such generalised tests. They will be useful for our intended application
of Oberwolfach randomness in effective analysis in Section 6.

In this section, let X ,Y P t2ω, r0, 1su, considered as computable probability
spaces. A rational open ball in 2ω is a sub-basic clopen subset of the form rσs for
some σ P 2ăω, and in r0, 1s is an open interval with rational endpoints (including
r0, aq and pb, 1s).

Definition 2.6. An interval array (in Y, indexed by X ) is a effective map G from
the collection of rational balls in X to the effectively open subsets of Y such that:

(a) For all I, λpGpIqq ď λpIq; and
(b) If I Ď J then GpIq Ď GpJq.

An interval test consists of an interval array G and a left-c.e. real α P X . The
set of reals in Y which are captured by the test pG,αq is

č

αPI

GpIq.

In the case X “ 2ω, an interval array G is an effective mapping σ ÞÑ Gσ such
that λpGσq ď 2´|σ| and Gτ Ď Gσ if τ extends σ. The set of reals captured by an
interval test pG,αq is

Ş

n Gαæn . It is not hard to see that in fact in this case, xGαæny
is an Oberwolfach test. Below we will see that all Oberwolfach tests are of this
form.

Remark 2.7. It is sometimes convenient to extend an interval array to be defined
on all open subsets of X . If G is an interval array, then for open U Ď X we let

GpUq “
ď

GpIqvI is a rational open ball contained in Uw.

This function certainly extends G, and satisfies conditions (a) and (b) from Def-
inition 2.6. The reason that (a) holds is that every open subset U of 2ω equals
the disjoint union of the maximal rational balls contained in U ; and that every
open subset of r0, 1s is the disjoint union of the maximal open intervals contained
in U , while every open interval in r0, 1s is the increasing union of its rational sub-
intervals. We note that if pG,αq is an interval test, then the reals captured by
pG,αq are precisely the reals Z such that Z P GpUq for all open subsets U of X
containing α.

Remark 2.8. In Theorem 6.8 below we make use of the fact that in (a) of Defi-
nition 2.6 for the case X “ r0, 1s we could also require the weaker condition that
λpGpIqq ď DλpIq for some constant D P Q` while retaining the same randomness
notion. For let I˚ be a rational interval of length ă 1{D containing α. We only
need to consider GpJq for subintervals J of I˚. Let f be the increasing linear map
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sending I˚ to r0, 1s. We define a new interval array by rGpIq “ Gpf´1pIqq. Then

the new array satisfies (a), and the test p rG, fpαqq captures the same reals as pG,αq.

Proposition 2.9. Every real which is not Oberwolfach random is captured by an
interval test indexed by 2ω.

The converse of Proposition 2.9 is proved in the next section.

Proof. Let Unxsy be an approximation for an Oberwolfach test. Let α0 “ 0ω.
Inductively define αs by letting αspnq “ 1 for the least n such that Unxsy changes
at stage s; αs æn“ αs´1 æn and αspmq “ 0 for m ą n. If no version changes at stage
s then αs “ αs´1. We then let α “ limαs and define Gσ to be empty until we see
a stage s at which σ is an initial segment of αs; then we let Gσ “ U|σ|xsy. Then
pσ ÞÑ Gσ, αq is an interval test which captures the same reals captured by xUny. �

Proposition 2.10. Every real which is captured by an interval test indexed by 2ω

is also captured by an interval test indexed in r0, 1s.

Proof. Let pG “ xGσy, αq be an interval test indexed by 2ω. We extend it to
all open subsets of 2ω, as in Remark 2.7. Let Θ: 2ω Ñ r0, 1s be the canonical
near-isomorphism (Remark 2.1). We push the array xGpUqy forward by Θ: we
let pΘ˚GqpIq “ GΘ´1I . Then Θ˚G is an interval array indexed in r0, 1s, and
pΘ˚G,Θpαqq captures every real captured by pG,αq. �

2.3. Cost functions. The third test notion which captures Oberwolfach random-
ness uses the notion of an additive cost function. We review relevant material
concerning cost functions.

As in [41, Section 5.3], a cost function is a computable function

c : ω ˆ ω Ñ tx P Q : x ě 0u.

We say c is monotonic if cpx` 1, sq ď cpx, sq ď cpx, s` 1q for each x ă s. In this
paper, all cost functions we encounter will be monotonic, and so we omit mentioning
this adjective from now on.

When building a computable approximation of a ∆0
2 set A, we view cpx, sq as the

cost of changing Apxq at stage s. We also write cspxq instead of cpx, sq to indicate
it is the cost of a change at x at stage s. We can then express that the total cost
of changes, taken over all x, is finite [41, Section 5.3]. We say that a computable
approximation xAsysPω obeys a cost function c if

8 ą
ÿ

x,s

tcspxq : x ă s^ x is least such that As´1pxq ‰ Aspxqu.

We say that a ∆0
2 set A obeys c if some computable approximation of A obeys c.

We write cpxq “ sups cpx, sq and call cpxq a limit cost function. We say that
a cost function c fulfills the limit condition if limx cpxq “ 0. The by-now classic
cost-function construction states that every cost function with the limit condition is
obeyed by some promptly simple c.e. set. The cost function construction originated
in [31, 15] and was formulated in the present generality first in [41, Section 5.3].
Again, all cost functions considered in this paper satisfy the limit condition, and
so we omit mentioning it below.

Let g : ω Ñ ω. A cost function c is called g-benign if gpnq bounds the length of
any finite sequence x0 ă x1 ă . . . ă xk such that cpxi, xi`1q ě 2´n for each i ă k.
A cost function is benign if it is g-benign for some computable function g.

The following was defined in [42].
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Definition 2.11. We call a cost function c additive if x ă y ă t implies cpx, tq “
cpx, yq ` cpy, tq.

We see that if c is additive then cpx, tq “
ř

aPrx,tq cpa, a` 1q. Thus the additive

cost functions are of the form cβpx, sq “ βs ´ βx for some left-c.e. real β P r0,8q
(simply let βs “ cp0, sq). We note that every additive cost function is op2nq-benign.

Obedience to cost functions characterises lowness classes by results in [40, 23, 11].

Theorem 2.12.

(1) A set is K-trivial if and only if it obeys every additive cost function if and
only if it obeys the cost function cα for some left-c.e. random real α.

(2) A set is strongly jump-traceable if and only if it obeys every benign cost
function.

2.4. Left-c.e. bounded tests. For Oberwolfach tests (as well as Martin-Löf, weak
Demuth and limit tests) xUny we require that λpUnq ď 2´n. As we mentioned
above, more general notions of tests (such as weak 2-random tests) allow λpUnq to
approach 0 more slowly. In this section we require that xUny is a uniformly Σ0

1

sequence (that is, Un “ Wfpnq for a computable function f), but allow λpUnq to
approach 0 more slowly than computable functions do. The speed at which λpUnq
tends to 0 is calibrated by cost functions discussed in Subsection 2.3. Recall that
we assume the limit condition cpnq Ñ 0 for all cost functions c.

Definition 2.13. Let c be a limit cost function. A (uniformly Σ0
1) test xVny is a

c-test if λpVnq ď cpnq for all n.

Definition 2.14. A left-c.e. bounded test is a c-test for c the limit of an additive
cost function.

Thus, a left-c.e. bounded test is a nested sequence xVny of uniformly Σ0
1 classes

such that for some left-c.e. approximation xβsy of a real β we have λpVnq ď β ´ βn
for all n. By delaying enumeration into Vn, we may assume that λpVnrssq ď βs´βn
for all n and s. Below we will assume this throughout.

Proposition 2.15. The following are equivalent for a real Z:

(1) Z is captured by some Oberwolfach test.
(2) Z is captured by some interval test.
(3) Z is captured by some left-c.e. bounded test.

That is, Oberwolfach, interval and left-c.e. bounded randomness coincide.

For comparison, a set is weakly Demuth random if and only if it passes every
c-test when c is benign, and is balanced random if and only if it passes every c-test
when c is 2n-benign. On the other hand, a set is ML-random if and only if it passes
every cβ-test for additive cost function cβ where the real β is computable.

Proof. (1)ùñ(2): This is Proposition 2.9.

(2)ùñ(3): Using Proposition 2.10, we may assume that Z is captured by an
interval test pG,αq indexed by r0, 1s. We may assume that G is defined on all open
subsets of r0, 1s (Remark 2.7). We let In be the open interval pαn, α` 2´nq, which
is Σ0

1, and let Vn “ GpInq. Then

λpVnq ď λpInq “ α´ pαn ´ 2´nq,

and we note that xαs ´ 2´sy is also a left-c.e. approximation of α. So xVny is a
left-c.e. bounded test. If Z is captured by pG,αq, then, as observed in Remark 2.7
above, Z P GpUq for all open U containing α, and so Z is captured by xVny.
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(3)ùñ(1): Let xVny be a left-c.e. bounded test, with λpVnq ď α ´ αn for some
left-c.e. real α, which we may assume is irrational and lies in the open interval
p0, 1q. For all n ă ω and s ď ω, we let kspnq be the greatest integer k such that
αs ě k{2´n; and we let tspnq be the least stage t ď s such that αt ě kspnq{2

´n.
We let

Unxsy “ Vpď2´n
q

tspnq
.

It is easy to see that Un is an Oberwolfach test, that tωpnq is a non-decreasing and
unbounded sequence, and that Un “ Vtωpnq. Because xVny is nested, so is xUny, and
Ş

Un “
Ş

Vn. �

3. A ML-random set which is not Oberwolfach random is LR-hard

In this section we show that a Martin-Löf random set that is not Oberwolfach
random is close to Turing complete. We provide two formal interpretations of the
latter condition. The first is being LR-hard as discussed in the introduction. The
second is tracing every partial computable function relative to H1, where the size
of the n-th tracing set is bounded by 2Kpnq. Note that usually trace bounds are
computable. In our case, the bound is merely upper semicomputable. We also
discuss existence of Turing incomplete sets that are close to Turing complete in
the second sense. Interestingly, these cannot be obtained through pseudo-jump
inversion in the sense of Jockusch and Shore.

3.1. LR-hardness. Here we prove Theorem 1.5.

Theorem 1.5. Every ML-random set which is not Oberwolfach random is LR-hard.

This theorem improves a result of Bienvenu et al. [3] where the hypothesis was
that Y is not a density-one point. The proof relies on the technique used to prove
this earlier result.

Proof. Dobrinen and Simpson [12] called a set X almost everywhere (a.e.) domi-
nating if for almost every oracle B, every function g ďT B is dominated by some
function h ďT Y . Kjos-Hanssen, Miller and Solomon [26, 28] proved that X is
LR-hard iff X is a.e. dominating.

Now suppose that Y is not LR-hard. As in [3], there is a positive measure class
of oracles B such that some function g ďT B is not dominated by any function
h ďT Y . Pick a set B in this class such that B is ML-random relative to Y . By
van Lambalgen’s theorem, Y is ML-random relative to B.

Suppose also that there is a left-c.e. bounded test xVxy capturing Y , with λVx ď
β ´ βx for some left-c.e. real β. We show that Y is not ML-random relative to B,
which is a contradiction.

We define a function f ďT Y . Let fp0q be the least s such that Y P V0rss. If fpnq
has been defined, let fpn`1q be the least s ą maxpfpnq, nq such that Y P Vfpnqrss.

Fix a function g ďT B such that D8n gpnq ą fpn` 1q.
Case 1: gpnq ą fpn` 1q for almost all n. Let hprq “ gprqp0q, and let

Sr “ Vhprqrhpr ` 1qs.

For almost every r, hpr ` 1q “ gphprqq ą fphprq ` 1q, so Y P Vfphprqqrhpr ` 1qs by
definition. By construction, for every r ą 0, hprq ď fphprqq. So

Sr Ě Vfphprqqrhpr ` 1qs,

and Y P Sr for almost every r.
ř

r λSr ď
ř

r βhpr`1q ´ βhprq “ β ´ βhp0q, so xSry is
a Solovay test. Hence, Y is not Martin-Löf random relative to B.
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Case 2: Otherwise. Then there are infinitely many n such that gpnq ď fpn ` 1q
and fpn` 2q ď gpn` 1q. Let instead

Sn “ Vgpnqrgpn` 1qs.

For such n,

Sn Ě Vfpn`1qrfpn` 2qs,

so Y P Sn. Again, xSny is a Solovay test, so Y is not Martin-Löf random relative
to B. �

3.2. JT-hardness for upper c.e. bounds. Let h : ω Ñ ω´ t0u. We say that an
oracle Y is h-JT-hard if every function f that is partial computable in H1 has an
Y -c.e. trace xTxy that is bounded by h. That is, |Tx| ď hpxq, and fpxq Ó implies
fpxq P Tx.

In the following we show that if Y is a Martin-Löf random set that is not Ober-
wolfach random, then Y is h-JT hard for functions h such as hpnq “ α2Kpnq for
some α ą 0. We use the following “measure-bounding” lemma, which reveals a
salient property of Oberwolfach randomness. Although stated for left-c.e. bounded
tests, it isolates the key difference between Oberwolfach tests and balanced tests:
in the former, the opponent cannot let small components of the test “gang up” and
amass much measure.

Lemma 3.1. Let xVny be a left-c.e. bounded test, where λpVnq ď α´ αn for some
left-c.e. real α. Suppose xtiy is an increasing sequence in ω with t0 “ 0. Consider
the sets Vt0rt1s,Vt1rt2s, . . . , and let Wpkq be the Σ0

1 class consisting of reals Y which
occur in at least k of these sets. Then λpWpkqq ď α{k.

Proof. For all i P ω, let pi be the characteristic function of Vtirti`1s. Let p “
ř

i pi.
Then Y PWpkq ðñ ppY q ě k. Also,

ż

p dλ “
ÿ

i

ż

pi dλ

“
ÿ

i

λVtirti`1s

ď
ÿ

i

αti`1 ´ αti

“ α.

Since p is non-negative,
ş

p dλ ě k ¨ λWpkq. The lemma follows. �

A function h : ω Ñ ω is called upper c.e. if it has a computable approximation
hpxq “ lims hspxq with hspxq ě hs`1pxq for each x, s.

Theorem 3.2. Let h : ω Ñ ω´t0u be an upper c.e. function such that
ř

k 1{hpkq ă
8. Suppose that a Martin-Löf random set Y is not Oberwolfach random. Then Y
is h-JT-hard.

Note that by the machine existence theorem (see e.g. [41, Theorem 2.2.17]), for
an upper c.e. function h, the hypothesis

ř

k 1{hpkq ă 8 is equivalent to 2Kpnq “
Ophpnqq. Note, though, that traceability is not invariant to multiplying bounds by
constants.

The idea for the following proof originates in [17, Theorem 23].

Proof. Let f be any partial H1-computable function. We let xfsy be a computable
sequence of total functions converging to f in a Σ0

2-fashion. That is, if fpnqÓ, then
lims fspnq “ fpnq, while if fpnqÒ, then lims fspnq does not exist.
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Fix a left-c.e. bounded test xVny with associated left c.e. real α which Y fails.
First we construct a sequence of c.e. operators xTky. Then we will verify that

@

TYk
D

eventually traces f and has size bounded by h.
In our strategy for constructing Tk, we keep an auxiliary value tpk, sq. We begin

by defining tpk, 0q “ 0. When not otherwise defined at the end of stage s, we define
tpk, s` 1q “ tpk, sq. In the following, s is always the current stage.

(1) While fspkq “ ftpk,sqpkq, enumerate fspkq into TYk for all Y P Vtpk,sqrss.
(2) When fspkq ‰ ftpk,sqpkq, define tpk, s` 1q “ s.
(3) Return to step 1.

Now, suppose fpkqÓ. Then the fspkq (s P ω) take on only finitely many values,
and so the strategy for Tk reaches step 2 only finitely many times. Let tpkq “
lims tpk, sq. Once fpkq has converged and Y has entered Vtpkqrss, fpxq will be

enumerated into TYk . So
@

TYk
D

kPω
traces f .

Finally, we must show that |TYk | ď hpkq. We let Wk be the Σ0
1 class consisting

of all reals X with Ds |TXk,s| ą hspkq. Let xtiy be the sequence of values tpk, sq

takes as s ranges over all stages of the construction. Now, note that while tpk, sq
is constant, fspkq is constant. So to enter Wk, X must enter at least hpkq different
Vtirti`1s. By the measure-bounding Lemma 3.1, we thus know that λpWkq ď

α{hpkq. By assumption,
ř

k α{hpkq “ α
ř

k 1{hpkq ă 8, so since Y is Martin-Löf
random, Y must occur in only finitely many of the Wk. So |TYk | ď hpkq for all but
finitely many k. �

3.3. Discussion. By random pseudo-jump inversion (Kučera (unpublished) and
independently Nies; see [48] and [41, Cor. 6.3.9]), it is known that there is an
incomplete, LR-hard ML-random set, which can in fact be chosen to be ∆0

2. By
Theorem 3.2 and the Day-Miller theorem [9] that some difference random real is
not a density-one point, we now know that there is an incomplete, ∆0

2 random set
satisfying the highness condition of Theorem 3.2 – being α2Kpnq-JT-hard for all
rational α ą 0. However, we do not know at present how to directly construct such
a ML-random set. We can directly build such a ∆0

2 set if we discard the requirement
to be ML-random.

Proposition 3.3 (with Hirschfeldt). There is an incomplete ∆0
2 set which is h-JT

hard for some function h “ op2Kpnqq.

Proof. By the existence of compression functions in the sense of [45] and its exten-
sion to K in [41, 3.6.16], there is a low set A and a function h ďT A such that
hpnq “ op2Kpnqq but limhpnq “ 8. For every order function g there is a non-
computable c.e. set which is g-jump-traceable. In fact, the requirement that the
bound function g be monotone is not necessary; all we need is that lim gpnq “ 8.
Relativizing this fact to A, and then to every B ěT A, we get an A-computable
pseudo-jump operator W such that W pA ‘ Xq is h-jump traceable in, and prop-
erly Turing above, A‘X for each set X. Now relativize the usual Jockusch-Shore
pseudo-jump inversion to A, and obtain Y ăT H

1 such that W pA‘Y q ”T A
1 ” H1.

The set Y ‘A is as required. �

Note that the set Y constructed in this proof can be chosen to be ML-random
in A, by using the relativisation to A of the ML-random pseudo-jump inversion
theorem mentioned above. So if we start with a ML-random set A then Y ‘ A
is ML-random. However, we do not know whether there is a low ML-random
computing a compression function for K. If we replace K by plain complexity C,
then we see that in fact there is no low ML-random set A computing a compression
function for C, because such a function would be of PA degree by [27, Theorem
4.1].
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For a c.e. set Y , the highness condition actually implies Turing completeness.
Because of the pseudo-jump inversion theorems, it is not common to see a highness
property shared by some incomplete random sets but not by some incomplete c.e.
sets.

Proposition 3.4 (F. Stephan). Suppose a c.e. set Y is 2Kpnq-JT hard. Then
H1 ďT Y .

Proof. Assume for a contradiction that Y is 2Kpnq-JT hard via a Y -c.e. trace
@

TYx
D

,

but H1 ďT Y . Then the size of the TYx is unbounded in x. Define a Turing
functional ΓZ as follows: given n, search for p and stage s such that |TZp,s| ą 22n

and output p at that stage.
There is a prefix free machine that, if n enters H1 at stage s and p “ ΓYs

s pnq Ó,
ensures Kppq ď n ` Op1q. We show H1 ďT Y . Given n, since Y is c.e., we can,
using Y as an oracle, compute s such that ΓYs

s pnq Ó with Y stable on the use. Then
n P H1 Ø n P H1s. �

In particular, H1 ďLR Y does not in general imply that Y is 2Kpnq-JT hard, so
Theorems 1.5 and 3.2 are independent. By a result of [28], H1 ďLR Y implies that
Y is h-JT hard for any computable function h with

ř

n 1{hpnq finite (also see [41,
Theorem 8.4.15]). A closer look at the proof reveals that the weaker hypothesis
that h be computable from both Y and H1 is sufficient. For instance, if Y is ∆0

2 we
could let hpnq “ 2K

g
pnq where g ďT Y is a time bound.

4. Oberwolfach randomness and computing K-trivial sets

4.1. Sets that are Martin-Löf, but not Oberwolfach random, compute
all K-trivial sets. Our goal in this subsection is to show that every K-trivial is
computed by every Martin-Löf random set Z that is not Oberwolfach random.

Proposition 4.1. Every c.e. K-trivial set A obeys every additive cost function.

In fact, every K-trivial set, whether c.e. or not, obeys every additive cost func-
tion [44]; but this fact relies on the golden run method in the form of the Main
Lemma [41, 5.5.1]. For the c.e. case, a short direct proof that every K-trivial obeys
the standard cost function cK was first given in [41, Thm. 5.3.27]. It can be easily
adapted to the case of additive cost function (see [44]). To be self-contained, we
give here a direct short proof.

Proof. Let c be an additive cost function; c “ cβ for some left-c.e. real β, and
without loss of generality, 0 ă β ă 1. Let xβsy be a left-c.e. approximation for β so
that β0 “ 0 and βs ă βs`1 for all s.

Let fpsq “ ´ logpβs ´ βs´1q. Because
ř

2´fpsq “ β, we have K ď` f . Let A
be K-trivial; so KpA ænq ď

` Kpnq, and together, KpA ænq ď fpnq ` b for some
constant b. By speeding up, we can find an enumeration xAsy of A so that for all
n ď s,

KspAs ænq ď fpnq ` b.

For each s, let xs be the least x such that Aspxq ‰ As´1pxq if such x exists,
otherwise xs “ s. Let S “ ts : xs ă su. Note that if xs ě s then cpxs, sq “ 0. So
we need to show that

ř

sPS pβs ´ βxs
q is finite.

For s P S, let Ts “ tσ ă As : xs ă |σ| ď su. Since Kpσq ď fp|σ|q ` b for all
σ P Ts, we have

ÿ

σPTs

2´Kpσq ě
s
ÿ

n“xs`1

2´fpnq`b “ 2´bpβs ´ βxs
q.
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The definition of xs shows that the sets Ts are pairwise disjoint, and so
ÿ

sPS

ÿ

σPTs

2´Kpσq ă Ω. �

As already mentioned in the introduction, Kučera [29] showed that every ∆0
2 ML-

random is Turing above an incomputable c.e. set. We use a key fact which comes
from a result by Hirschfeldt-Miller (see [41, 5.3.15]) extending Kučera’s argument.
Again, for being self-contained, we give a proof using our notation.

Proposition 4.2. Let c be a cost function, and let xVny be a c-test. If A is a ∆0
2

set which obeys c, then A is computable from every ML-random set in
Ş

n Vn.

Proof. Define a functional Γ by letting ΓXpnq “ Aspnq for all X P Vn,s ´ Vn,s´1.
Here xAsy is an enumeration of A which witnesses that A obeys c, and xVn,sy is an
enumeration of Vn so that for all s, λpVn,sq ď cspnq.

Certainly, if Z is captured by xVny then ΓZ is total. We show that if Z is captured
by xVny but Z is ML-random, then ΓZpnq “ Apnq for all but finitely many n.

Let xs be the least x such that Aspxq ‰ As´1pxq if such x exists, otherwise
xs “ s. So

ř

s cspxsq is finite. Now consider the sequence xVxs,sy. For all s, we
have λpVxs,sq ď cspxsq, and so

ř

λpVxs,sq is finite. That is, xVxs,sy is a Solovay
test.

Suppose that ΓZpnqÓ‰ Apnq. Let s be the stage at which Z P Vn,s ´ Vn,s´1. So
Apnq ‰ Aspnq “ ΓZpnq; this means that there is some t ą s such that xt ď n. So
Z P Vn,t Ď Vxt,t. This shows that if ΓZpnq ‰ Apnq for infinitely many n, then Z is
captured by the Solovay test xVxs,sy. �

Remark 4.3. The proof of Proposition 4.2 actually shows that Z computes a mod-
ulus for A, and so a c.e. set which computes A. This is not surprising, since every
∆0

2 set which obeys a cost function is computable from a c.e. set which obeys the
same cost function [41, 5.3.6].

We recall Theorem 1.1:

Theorem 1.1. If Z is ML-random but not Oberwolfach random, then Z computes
every K-trivial set.

Proof. Every K-trivial set is computable from a c.e. K-trivial set [40], so we may
assume that A is c.e. By Proposition 2.15, Z fails a left c.e. bounded test xVny with
associated additive cost function c. By Proposition 4.1, A obeys c. Hence A ďT Z
by Proposition 4.2. �

4.2. There is a K-trivial set not computable from any Oberwolfach ran-
dom set. In this subsection we build a c.e. K-trivial set A which is computable
from no Oberwolfach random set (Theorem 1.2). Intuitively, A is a relatively com-
plicated K-trivial set 1.2 in that the only ML-random sets able to compute it are
close to Turing complete, or, equivalently, not very random. As mentioned in the
introduction, in conjunction with the result of the previous subsection, we see that
a Martin-Löf random set computes A if and only if it computes all the K-trivial
sets.

Recall the notion of balanced randomness from Definition 2.2. As a warm-up to
the proof, we first provide the simpler proof of a result which is not, in fact, implied
by the main theorem of this subsection. This is because some K-trivial set does
not obey every 2n-benign cost function by Corollary 4.8 below.

Theorem 4.4. For any 2n-benign cost function c there is some c.e. set which
obeys c and is computable from no balanced random set.
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Kučera and Nies have shown that for any benign cost function c, there is some
c.e. set which obeys c and is computable from no weak Demuth random set [32].
We emphasize the strong parallels with this theorem: balanced tests are a special
case of weak Demuth tests, obtained by allowing at most 2n version changes instead
of allowing an arbitrary computable bound; similarly, 2n-benign cost functions are
a special cast of benign cost functions, obtained by allowing sequences of a certain
type to have length at most 2n instead of allowing an arbitrary computable bound.

Proof. We fix a Turing functional Υ that is universal in the sense that Υp0e1̂ Xq “
ΦepXq for each X, e. We enumerate a c.e. set A. To show that A is not computable
from any balanced random set, we show that no element of tX P 2ω : ΥpXq “
Au is balanced random. Then: if X computes A then there is some e such that
Υp0e1̂ Xq “ A. So 0e1̂ X is not balanced random; it follows that X is not balanced
random either because we allowed the Op2nq bound on changes in Definition 2.2.

Construction. We define an approximation xGnxsyy for a test xGny. We also enu-
merate a Σ0

1 class E , which is a permanent error class. The key idea for giving a
bound on the number of changes to each Gnxsy and showing that A obeys c is by
tying the cost of enumerating elements into A to the measure these enumerations
add to E .

We define diagonalisation witnesses vn,s targeted for A, which have the purpose
of showing that lots of oracles compute the wrong set. To be precise, by vn,s, As,
Es and Gnxsy we mean the values of these objects at the beginning of stage s.

When we start a new version of Gn at a stage t, we choose vn,t`1 to be large,
and let

Gnxt` 1y “ tX P 2ωzEt`1 : ΥpXq ľ At ævn,t`1`1u.

Whenever we start a new version of Gn, we also start a new version of Gm for m ě n.
So vn,s ă vn`1,s for all n and s. It follows that the sequence xGnxsyynăω is nested.

We decide to start a new version of Gn at a stage s if λpGnrssq ą 2´n. If there
is such n at the stage s, we choose the least such. Then, there are three cases.

(1) λpE X Gnqrss ą 2´n´1;
(2) λpE X Gnqrss ď 2´n´1 and cpvnqrss ą 2´n´1; and
(3) Cases (1) and (2) fail.

If either case (1) or case (2) holds, then we just start a new version of Gn (and
Gm for all m ą n). If case (3) holds, that is, if both λpE X Gnqrss ď 2´n´1 and
cpvnqrss ď 2´n´1, then we enumerate vn,s into As`1, Gnrss into Es`1, and start
new versions of Gm for m ě n.

Verification. The main task is to obtain the Op2nq bound on the number of times
each version of Gn changes. First we note that G0 never changes. Now let n ą 0,
let s be a stage at which Gn changes but Gn´1 does not, and let t be the stage at
which the version Gnxsy was defined.

One of the cases (1), (2) and (3) above holds at stage s.

(1) In this case, since we know that Gnxsy “ Gnxt` 1y, and by definition
Gnxt` 1y is disjoint from Et`1, we can conclude that λpEs´Et`1q ą 2´n´1.
This shows that case (1) can hold at at most 2n`1 many stages s.

(2) In this case, since vn,s “ vn,t`1 is chosen to be large at stage t, the benignity
bound on c shows that this case can hold at at most 2n`1 many stages.

(3) Finally, in this case, the failure of (1), the fact that λpGnqrss ě 2´n, and
the action taken in this case, together show that λpEs`1´ Esq ě 2´n´1. So
this case too can happen at most 2n`1 many times.

Altogether, we see that the number of stages s at which Gn changes but Gn´1

does not is at most 6 ¨ 2n. By induction, we see that the total number versions of
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Gn is bounded by

1` 6 ¨ 2` 6 ¨ 4` ¨ ¨ ¨ 6 ¨ 2n ď 12 ¨ 2n.

Hence the approximation xGnxsyy stabilizes at some value Gn, and the sequence
xGny is nested. Certainly, for all n, λpGnq ď 2´n.

Claim 4.4.1. For all X P E , ΥpXq ‰ A.

Proof. Suppose that Gnrss is enumerated into E at stage s. This enumeration is
accompanied by the enumeration of vn,s into As`1, while for every X P Gnrss
we have ΥpX, vn,sq “ Atpvn,sq “ 0 (for the stage t at which this version was
defined). �

Claim 4.4.2. For all X, if ΥpXq “ A then X P
Ş

Gn.

Proof. Let n ă ω; let t be the stage at which the final version of Gn was defined;
let vn “ vn,t`1 be the final value of xvn,sy. Let α “ At`1 ævn`1; so

Gn “ tX P 2ωzEt`1 : ΥpXq ě αu .

The fact that none of the versions Gm for m ď n change after stage t, and that the
sequence xvm,tymăω is strictly increasing, shows that α “ Aævn`1. By Claim 4.4.1,
if ΥpXq “ A then X R Et`1. Hence such X must be an element of Gn. �

Our final task is to show that A obeys c; of course, the enumeration of A witness-
ing this will be the enumeration given by the construction. Suppose thatAs`1 ‰ As;
then at stage s, some (unique) vn,s is enumerated into As`1. We know that in this
case, cpvnqrss ď 2´n´1 and λpEt`1 ´ Etq ě 2´n´1. This shows that the total cost

ÿ

cspxq vx is enumerated into A at stage sw

is bounded by
ÿ

s

λpEs`1 ´ Esq “ λpEq ď 1.

Hence the total cost is bounded as required. �

Note a feature of this construction: unlike most cost-function constructions, we
cannot bound, for each n, the contribution of the nth actor to the total cost cpxAsyq.
The only possible calculation is global. We will see that, in some sense, this is even
more so when Oberwolfach randomness is concerned: the relationship between the
total cost and the measure of E is tighter.

Toward a proof of Theorem 1.7 we need one fact that is implicit in [17].

Proposition 4.5. Suppose X is ML-random. Let X0, X1 be the two halves of X.
Then at least one of X0, X1 is balanced random.

Proof. Greenberg and Nies [23] defined a set Z to be ω-c.a.-tracing if each function
f ďwtt H

1 has a Z-c.e. trace pTZx qxPω such that |TZx | ď 2x for each x. By [17,
Theorem 23], if X0 is not ω-c.a. tracing then X0 is balanced random. Otherwise,
by [17, Prop. 32], any set ML-random in X0 is weakly Demuth random; thus by
van Lambalgen’s Theorem, X1 is weakly Demuth random, which implies that it is
balanced random. �

The following is now immediate from Theorem 4.4.

Corollary 4.6. There is a c.e., K-trivial set which is not computable from both
halves of any random set. In fact, for every 2n-benign cost function c, there is a
c.e. set of this kind that obeys c.
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We proceed to the main result of this subsection, the construction of a smart
K-trivial set. To justify the use of a universal Turing functional Υ, we prove an
analogue of the fact used above that balanced randomness is preserved under adding
a finite string at the beginning of a bit sequence.

Lemma 4.7. Let Z be an Oberwolfach random set. Then ρˆZ is Oberwolfach
random for each string ρ.

Proof. For a Σ0
1 class W and a string ρ we let

W|rρs “ tX P 2ω : ρ̂ X PWu .
Suppose that ρ̂ Z is not Oberwolfach random. Let pσ ÞÑ Gσ, αq be an interval test
capturing ρ̂ Z (see the proof of Proposition 2.9). Let τ “ α æ|ρ|. For all σ, let
Vσ “ Gτˆσ|rρs. Let β be such that α “ τˆβ. Then pσ ÞÑ Vσ, βq is an interval test
which captures Z. �

We can now prove Theorem 1.2:

Theorem 1.2. There is a K-trivial set which is not computable from any Ober-
wolfach random set.

We note that this yields another, albeit circuitous, proof of Proposition 2.5 that
every Oberwolfach random set is difference random. A ML-random which is not
difference random is complete, and so computes all K-trivial sets. Hence it is not
Oberwolfach random.

Proof. We actually prove an exact analogue of Theorem 4.4: for any additive cost
function c there is some c.e. set obeying c which is computed by no Oberwolfach
random set. Of course now the point is that the K-trivial sets are characterised as
those which obey all additive cost functions, and in fact some additive cost function
such as cΩ characterises K-triviality on its own. So fix an additive cost function c.

As in the proof of Theorem 4.4, we enumerate a c.e. set A, and make sure that
A obeys c. Again we fix a universal Turing functional Υ, and show that tX P

2ω : ΥpXq “ Au is covered by an Oberwolfach test xGny which we approximate
during the construction. Now Lemma 4.7 ensures that A is computable from no
Oberwolfach-random set.

The components xGnxsyy of our approximation will be identical to those of the
proof of Theorem 4.4; we again enumerate the error class E , define markers vn,s,
and when redefining Gn at a stage t, we choose vn,t`1 to be large and let

Gnxt` 1y “ tX P 2ωzEt`1 : ΥpXq ľ At ævn,t`1`1u.

Certainly, to make xGnxsyy an approximation showing that xGny is an Oberwolfach
test, whenever we start a new version of Gn, we also start a new version of Gn`1; so
again vn,s ă vn`1,s for all n and s. The only difference is the timing of the changes
and the choice when to enumerate numbers into A, which has to be slightly more
delicate.

In general, we need to start a new version of Gn at a stage s if:

(1) either λpGnrssq ě 2´n; or
(2) λpE X Gnq ` cpvnq ě 2´n rss.

And the aim is to restart with no enumeration in case (2), and enumerate vn,s into
A (and Gnrss into E) if (1) (but not (2)) holds.

We note the similarity with the proof of Theorem 4.4. In the previous setting,
the only prompt to changing Gnxsy was if the measure bound λpGnq ď 2´n was
exceeded. In the current construction we also need to pre-empt situations which
entail multiple changes of Gn while xGn´1y is stable. For example, in the previous
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construction we could see about 2n`1 many stages during which Gn´1 is stable, but
at which Gn changes are accompanied by high cpvnq costs and so by no enumerations
into E . However, to ensure the overall coherence of moves of various levels, we
need to consider the following scenario. Suppose that at stage s, Gn requests an
“aggressive” change which results in enumerations. The added mass into E will
now trigger an earlier Gp, say Gn´1, to want to change as well. In the previous
construction, Gn´1 could wait until the next stage to act. But our analysis below
will show that in fact the change in Gn can be the second change during the time
Gn´1 is fixed, which is not allowed: Gn´1 has to change immediately.

So here is the construction. At stage s, first see if there is some n ă s with
λpGnrssq ě 2´n but λpE X Gnq ` cpvnq ă 2´n rss. If there is such an n, we pick
the least such, enumerate vn,s into A and Gnrss into E . If there is no such n, then
As`1 “ As and Es`1 “ Es.

Then, we look to see if there is some p such that λpEs`1XGprssq`cpvpqrss ě 2´p.
If so, we choose the least such p and restart Gk for all k ě mintn, pu. If neither n
nor p are found, then no test component is restarted.

To verify the construction, this time, we first show that the total cost cpxAsyq is
finite. Suppose that vn,s is enumerated into A at stage s. Again, the finite bound
on the total cost is obtained once we show:

Claim 4.7.1.
cpvnqrss ď λpEs`1 ´ Esq.

Proof. At stage s we see that λpGnrssq ě 2´n but λpEs X Gnrssq ` cpvnqrss ă 2´n.
This means that

λ pGnrss ´ Esq ě 2´n ´ λ pGnrss X Esq ą cpvnqrss.

But at stage s we enumerate Gnrss into E , so

Gnrss ´ Es Ď Es`1 ´ Es,
proving the claim. �

Now we turn to the main task of showing that xGnxsyy converges to an Oberwol-
fach test. To show that there are only finitely many versions of G0 one can argue
directly, as we shall soon do for Gn, but a quick way is to start our sequence with
G´1 instead of G0, and to scale c so that cspxq ă 1 for all s and x. Then, we easily
see that G´1 never changes.

For the rest of the argument we make a simple observation:

Claim 4.7.2. Let n ě ´1, and let u ă w be successive stages at which Gn`1 is
restarted. Suppose that Gn is not restarted at stage w. Then

cpvn`1qrws ` λ pGnrws X pEw`1 ´ Eu`1qq ě 2´n´1.

Proof. Let q “ cpvn`1qrws. There are two cases. In both cases we use the facts
that Gn`1rws Ď Gnrws, and that Gn`1rws X Eu`1 “ H.

If vn`1,w is not enumerated into A at stage w, then we know that

q ` λpEw`1 X Gn`1rwsq ě 2´n´1,

and the result follows.
Otherwise, at stage w we enumerate all of Gn`1rws into Ew`1 X Gnrws, and we

know that λpGn`1rwsq ě 2´n´1; then in fact we get

λpGnrws X pEw`1 ´ Eu`1qq ě 2´n´1,

without q’s aid. �



20 BIENVENU, GREENBERG, KUČERA, NIES, AND TURETSKY

Fix n ě ´1, and let r ă s ă t be successive stages at which a new version of
Gn`1 is defined; suppose, for contradiction, that Gn is restarted at neither stage s
nor stage t.

For brevity, let x “ vn,r`1 “ vn,s “ vn,t; and let y “ vn`1,r`1 “ vn`1,s and
z “ vn`1,s`1 “ vn`1,t. So x ă y ă s ă z ă t.

Now we apply Claim 4.7.2 twice, at stages s and t. We obtain:

ctpzq ` λpGnrts X pEt`1 ´ Es`1qq ě 2´n´1,

and because Gnrss Ď Gnrts we obtain

cspyq ` λ pGnrts X pEs`1 ´ Er`1q ě 2´n´1.

Additivity and monotony of c imply that

cpvnqrts “ ctpxq ě ctpyq ě cspyq ` ctpzq,

and so putting the two inequalities together we obtain

cpvnqrts ` λ pGnrts X Et`1q ě 2´n.

Thus, n would play the role of p in the second step of the construction at stage t,
and so we would be instructed to pick a new version for Gn at stage t, contrary to
assumption.

The rest of the proof follows the proof of Theorem 4.4 verbatim; we see that
every X for which ΥpXq “ A is in

Ş

n Gn and so is not Oberwolfach random. �

K-triviality is characterized by obeying the standard cost function cK [40]. This
cost function is op2nq benign. We obtain a corollary to Theorem 1.2 specifying a
different but related sense in which the K-trivial set A constructed there is smart.

Corollary 4.8. There is a c.e., K-trivial set which does not obey some op2nq-benign
cost function.

Proof. Each computable approximation xYsy of a ∆0
2 ML-random set Y yields a

cost function cY such that any set A obeying it is Turing below Y [23] (or see [41,
5.3.13]). By [17, Theorem 11] there is a low ML-random set Y with a computable
approximation xYsy such that Ys æn changes only op2nq many times. Then by its
definition, cY is op2nq benign. Thus, using the fact that each ML-random non-
Oberwolfach random set is high, the smart K-trivial constructed in Theorem 1.2
does not obey cY . �

Turetsky [51] has built a c.e., K-trivial set A that is complex in the sense that
it is not oplog nq jump traceable. We do not know at present whether the smart
K-trivial built in Theorem 1.2 must have this property.

4.3. Diamond classes and ML-reducibility. For any class C Ď 2ω we let C♦

denote the c.e. sets Turing below every Martin-Löf random member of C (see for
example [41, Sec.8.5]). Usually C is arithmetical. By the foregoing results, together
with [9], the c.e. K-trivial sets form a diamond class:

Corollary 4.9. Let C be a nonempty class of difference random, non-Oberwolfach
random sets. Then C♦ coincides with the c.e. K-trivial sets.

For instance, we can let Y be a difference random set that is not a density-one
point [9] and hence not Oberwolfach random; then tY u♦ equals the class of c.e.
K-trivial sets. Thus, the whole class of K-trivial sets is encoded in a single random
set, which can in fact be chosen to be ∆0

2.

Proof. C♦ is contained in the K-trivial sets by the aforementioned result of [25].
On the other hand, each K-trivial set is in C♦ by Theorem 1.1. �
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We let JTH denote the class of sets that are h-JT-hard for some (computable)
order function h. Every LR-hard set is in JTH via an op2nq order function by [48]
(or see [41, 8.4.15]).

The class JTH ♦ was discussed in [41, 8.5.12]. In particular, by [23] there is
a single benign cost function c such that any set obeying c is in JTH ♦. As a
consequence, JTH ♦ strictly contains the class of c.e. strongly jump traceable sets.
As a consequence of the previous two theorems, we separate JTH♦ from the c.e.
K-trivials.

Corollary 4.10. JTH ♦ is a proper subclass of the c.e. K-trivial sets.

Proof. By [18] there is a c.e. jump traceable set W that is not jump traceable
at order n2. Then, by pseudo-jump inversion for random sets [41, Thm. 6.3.9]
there is a ML-random ∆0

2 set Z which is JT-hard, but not n2-JT hard. Then Z
is Oberwolfach random by Theorem 3.2. Thus the smart K-trivial constructed in
Theorem 1.2 is not Turing below Z. �

The investigations on diamond classes such as in [22], together with the results
in this section, suggest a new reducibility coarser than ďT among the K-trivials.

Definition 4.11. For K-trivial sets A and B, we write B ďML A if A ďT Y implies
B ďT Y for any ML-random set Y .

This reducibility gauges complexity via the paradigm of [22] that being low
means easy to compute, in the sense that many oracles compute the set. Clearly,
ďT implies ďML, and the ML-degrees form an upper semilattice where the least
upper bound of K-trivial sets C and D is given by the K-trivial set C ‘D. The
set A constructed in Theorem 1.2 is smart in that it satisfies B ďML A for every
K-trivial set B.

Consider now the ML-degrees of K-trivial sets. Each diamond class induces an
ideal of this degree structure (an initial segment closed under join). Within the
ML-degrees of c.e. sets, any principal ideal tB : B ďML Au is the diamond class of
the Σ0

3 class

CA “ tY : A ďT Y u.

Thus, B ďML A if and only if B lies in every (Σ0
3) diamond class that contains A.

Technical questions on ďML abound. For instance, is ďML arithmetical? Is the
ordering of ML-degrees linear? Within the c.e. ML-degrees, one can equivalently
ask: are there incomparable diamond classes? To show non-linearity, one would
need to build K-trivial sets A0, A1 and ML-random sets Y0, Y1 such that Ai ďT Yi
yet Ai ďT Y1´i (i “ 0, 1).

5. Density, martingale convergence, and Oberwolfach randomness

Recall that in the introduction, we discussed the concept of density: for measur-
able S Ď R and z P R, we define the lower density of S at z to be

ρpS|zq “ lim inf
hÑ0

tλpS|Iq : I is an open interval, z P I & |I| ă hu ,

where λpS|Uq “ λpS X Uq{λpUq is the conditional measure of S given U . For
brevity, we sometimes use the notation

lim inf
IÑz

λpS|Iq

to denote the limit above. The upper density of S at z is defined similarly, but
using the limit superior instead of the inferior: it is lim supIÑz λpS|Iq. If the upper
and lower densities of S at z are equal, then their common value is known as the
density of S at z.
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When working in Cantor space, it is more natural to work with dyadic density,
which is defined analogously. For a set S Ď 2ω and Z P 2ω, the lower dyadic density
of S at Z is

ρ2pS|Zq “ lim inf
nÑ8

λpS|rZ ænsq,

The upper dyadic density of S at Z is lim supn λpS|rZ ænsq. If the lower and upper
dyadic densities of S at Z are equal, then their common value is the dyadic density
of S at Z.

Remark 5.1. Even though it is natural to use dyadic density in Cantor space and
full density in the real line, we nonetheless can use both notions in either space, by
using the “near-isomorphism” Θ between the two described in Remark 2.1. We can
then extend the notion from the unit interval to all of R by using rational shifts. If
z P R is not a dyadic rational, then the dyadic density of a set S Ď R at z is the
limit, as |I| Ñ 0, of λpS|Iq, where I is a dyadic open interval (an interval of the
form pk2´n, pk ` 1q2´nq for k P Z and n ă ω) which contains z. Since we mostly
consider random points, we are not concerned about rational numbers. Thus, for
any irrational number z and any measurable set S, ρpS|zq ď ρ2pS|zq.

Recall that the Lebesgue density theorem [34, p. 407] says that for any mea-
surable set S Ď r0, 1s, for almost all points z P S, the density of S at z is 1. As
mentioned in the introduction, an expanding project of algorithmic randomness is
to understand the effective content of “almost everywhere” theorems of analysis by
associating with each theorem the class of random sets which makes every effective
instance of this theorem work. Usually, different choices for the effective version of
the theorem would yield different classes of random sets.

To state an effective version of Lebesgue’s density theorem, we need to choose a
class C of effectively presented subsets of r0, 1s and ask, for which random points
z, is the density of S at z equal 1, for all S P C containing z? Choosing C to be the
class of effectively open sets will yield trivial answers, and so we concentrate on the
class of effectively closed sets.

As mentioned, a closely related result of Bienvenu, Hölzl, Miller and Nies char-
acterizes nonzero density of ML-random sets.

Theorem 5.2 ([2],Thm.3.2,Rmk.3.4). The following are equivalent for a Martin-
Löf random set Z P 2ω:

(1) Z is difference random;
(2) ρ2pP |Zq ą 0 for every effectively closed subset P of 2ω which contains Z;
(3) ρpP |zq ą 0 for every effectively closed subset P of r0, 1s which contains the

real z with binary expansion given by Z.

The main question – for which random points z, is ρpP |zq “ 1 for all effectively
closed sets P containing z? – remains open. As we mentioned in the introduction,
following Bienvenu et al., we say that a real z P r0, 1s is a density-one point if
ρpP |zq “ 1 for every effectively closed set containing z. As mentioned above, Day
and Miller [9] showed that difference randomness does not suffice to be a density-
one point. They construct a Martin-Löf random set Z such that ρ2pP |Zq ą 0
for every effectively closed set containing Z, but such that ρ2pP |Zq ă 1 for some
effectively closed set containing Z. The first part guarantees that Z is difference
random (Theorem 5.2).

Remark 5.3. Bienvenu et al. noted that there are density-one points which are not
random. For example, every 1-generic point is a density-one point, since it lies in
the interior of any effectively closed set containing it. No 1-generic real is Martin-
Löf random, or even Schnorr random. This is why in this investigation, we focus
on classifying the density-one points within the ML-random points.
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In this section we show that every Oberwolfach random set is a density-one
point. The argument filters through martingale convergence. In the next section
we give another proof, using differentiability. As mentioned in the introduction, we
do not know whether there is a density-one random point which is not Oberwolfach
random.

5.1. Martingale convergence. In the theory of algorithmic randomness, by a
martingale one means a function M : 2ăω Ñ r0,8q with the usual averaging con-
dition Mpσ0q `Mpσ1q “ 2Mpσq for each string σ. For background on martingales
in this sense see for instance [14, Section 5.3]. An important fact frequently used
is Kolmogorov’s inequality : if Mpxyq ă b, then

λtZ P 2ω : Dn rMpZ ænq ě bsu ďMpxyq{b.

See for instance [41, 7.1.9] or [14, Section 5.3].
A martingale M is called left-c.e. if Mpσq is a left-c.e. real uniformly in σ; right-

c.e. martingales are defined analogously.
For a set Z P 2ω, we say that a martingale M converges on Z if the sequence

xMpZ ænqynăω has a (finite) limit. The “buy low, sell high” trick (see for example
[14, Thm.7.1.3]) shows that a set Z is computably random if and only if every com-
putable martingale converges on Z. The analogous fact fails for left-c.e. martingales
and ML-randomness. If every left-c.e. martingale converges on Z (to a finite value)
then certainly no left-c.e. martingale can succeed on Z, and so Z is ML-random.
However, the converse may fail.

To see this, we note that dyadic density translates to martingales. For any mea-
surable set A Ď 2ω, the function MApσq “ λpA|σq is a martingale. By definition,
the dyadic density of A at Z exists if and only if MA converges on Z. If P Ď 2ω is
effectively closed, then MP is a right-c.e. martingale bounded by 1; σ ÞÑ 1´Mpσq
is a left-c.e. martingale.

For a random set Z and an effectively closed set P containing Z, the convergence
of density is equivalent to having lower density 1; the same holds for dyadic density.

Proposition 5.4. Let P Ď 2ω be an effectively closed set and let Z P P be Martin-
Löf random. Then the upper density of P at Z is 1.

Proof. Fix a Π0
1-class P Ď 2ω. Let Y P P such that the upper density of P at Y is

less than some rational q ă 1. We define a Martin-Löf test xUny which captures Y .
The components Un are defined by induction on n. We let U0 “ rY æks, where k

is sufficiently large so that λpP|Y æmq ă q for all m ě k. Given Un, let Un be a c.e.
antichain of strings generating Un; note that all of these strings will extend Y æk. We
let Un`1 be the union of the sets PtXrσs where σ P Un and t is the least stage such
that λpPt|rσsq ă q. Note that each such set is clopen, so Un is indeed (effectively)
open. By induction, we see that Y P Un`1. Also, we note that by definition, for
each σ P Un, λpUn`1|rσsq ă q (it is of course possible that Un`1 X rσs “ H) and
so λpUn`1q ď qλpUnq. So by induction, λpUnq ď qn. Replacing Un by Urn for an
appropriate r P ω yields a ML-test as required. �

The translation of dyadic density to martingales yields:

Corollary 5.5. Let Z P 2ω. If every left-c.e. martingale M converges on Z, then
for every effectively closed set P Ď 2ω containing Z we have ρ2pP|Zq “ 1.

Thus, the construction of Day and Miller [9] shows that there is some difference
random set Z and a left-c.e. martingale M which does not converge on Z. Doob’s
martingale convergence theorem [13] states that every martingale M converges on
almost every Z P 2ω. Hence some notion of randomness ensures the convergence of
left-c.e. martingales. We show that Oberwolfach randomness suffices.
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Theorem 5.6. If Z is Oberwolfach random, then every left-c.e. martingale con-
verges on Z.

Corollary 5.7. Let z P r0, 1s be Oberwolfach random. Then for any effectively
closed set P containing z, the dyadic density of P at z is 1.

For the proof of Theorem 5.6 we observe the oscillations in the value of the
martingale along an element of Cantor space. We need a fact that follows from the
upcrossing inequality for martingales (see, for instance, [16, pg. 235]); the proof of
this fact is short, so we give it for completeness.

Let M be a martingale. Let a ă b be real numbers, and let n ă ω. Let
On “ OnpM,a, bq be the set of all sequences X P 2ω for which there is a sequence
m1 ă k1 ă m2 ă k2 ă ¨ ¨ ¨ ă mn ă kn such that for i “ 1, . . . , n we have
MpX æmi

q ă a and MpX ækiq ą b.

Lemma 5.8. λpOnpM,a, bqq ď pa{bqn.

Proof. We consider “smallest” oscillations. We define antichains of strings Un and
Vn by induction, with Vn refining Un and Un`1 refining Vn. We start with V´1 “ xy.
Given Vn, we let Un`1 be the collection of minimal strings τ extending some string
in Vn such that Mpτq ă a. Given Un, we let Vn be the collection of minimal
strings τ extending some string in Un such that Mpτq ą b. Let Un be the open
set generated by Un and Vn be the open set generated by Vn. So 2ω “ V´1 Ě

U0 Ě V0 Ě U1 Ě V1 Ě . . . . Kolmogorov’s inequality tells us that for every σ P Un,
λpVn|σq ď a{b. Hence by induction we see that λpVnq ď pa{bqn. But we also see
that Vn “ On: certainly Vn Ď On; for the other inclusion, take X P On and by
induction let m1 be the least m such that MpX æmq ă a; k1 be the least k ą m1

such that MpX ækq ą b; m2 be the least m ą k1 such that MpX æmq ă a; and so
on. By induction we see that X æmi

P Ui and X ækiP Vi. �

Let M be a left-c.e. martingale. The set On “ OnpM,a, bq is open, but may not
be effectively open. The point, of course, is that we can discover that MpX ækq ą b
at some stage, but if we see at some stage that MpX æmq ă a, there is no guarantee
that the value of MpX æmq will not increase beyond a at some later stage. However,
when an observed oscillation “goes bad”, i.e. ceases to be a true oscillation, there
is a necessary corresponding increase to Mpxyq. We use an interval test to let
components of the test guess approximate values for Mpxyq, and so limit the amount
of badness.

Proof of Theorem 5.6. Let M be a left-c.e. martingale. After applying a rational
scaling factor toM , we may assume thatMpxyq P p0, 1q. Suppose that xMpZ ænqynăω
does not converge; find rational numbers a ă b such that lim infnMpZ ænq ă a ă
b ă lim supnMpZ ænq. We will define an interval test that captures Z.

Let xMty be an increasing, uniformly computable sequence of (rational-valued)
martingales which converges (pointwise) to M . We define an interval test using
the left-c.e. real Mpxyq. We later calculate a constant C ą 0. For a rational open
interval I Ď r0, 1s we let nI “ 1` tC ¨ p´ log2 |I|qu and define

GpIq “
ď

OnI
pMt, a, bq vall t such that Mtpxyq P Iw.

That is, we enumerate into GpIq all the sets X on which we see an pa, bq-oscillation
of length nI in xMtpX ænqynăω, while Mtpxyq P I. For all n, for all sufficiently
large t, we have Z P OnpMt, a, bq. If Mpxyq P I then for almost all t, Mtpxyq P I and
so Z P GpIq. Thus, the interval test pG,Mpxyqq captures Z. It remains to show
that G is an interval array, as in Definition 2.6.
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Suppose that I Ď I 1 are rational open intervals. Then |I| ď |I 1| implies that
nI ě nI1 . Hence, for all t, OnI

pMt, a, bq Ď OnI1
pMt, a, bq. If Mtpxyq P I then

Mtpxyq P I
1, and we conclude that GpIq Ď GpI 1q.

It remains to bound the measure of GpIq; by Remark 2.8 it suffices to show that
λpGpIqq is bounded by a constant multiple of |I|. Fix a rational open interval I,
and let T “ T pIq be the set of stages t at which Mtpxyq P I; so T is an interval (or
ray) of stages. We bound the measure of GpIq by considering two parts: oscillations
which “go bad”, and oscillations which remain more or less good.

Let c “ pa ` bq{2 (any number in the interval pa, bq would do, but it cannot
depend on I). Let t˚ “ supT (if Mpxyq P I then t˚ “ ω, and below we let
Mω “ M). We let GpIqbad “ GpIqzOnI

pMt˚ , c, bq, that is, all sequences X which
appear to be oscillating nI times between a and b at some stage t P T , but by stage
t˚ we see that they no longer oscillate even between c and b. We let GpIqgood “

GpIq XOnI
pMt˚ , c, bq.

First, we observe that as GpIqgood Ď OnI
pMt˚,c,bq, Lemma 5.8 shows that

λpGpIqgoodq ď pc{bqnI .
Next, we consider GpIqbad. Here we note that for all X P GpIqbad there is

some k and some t ă t˚ in T such that MtpX ækq ă a but Mt˚pX ækq ě c. Let
t˚ “ minT and let K be the set of minimal strings σ such that Mt˚pσq ă a and

Mt˚pσq ě c. Thus, GpIqbad is contained in the open set K generated by K. Since
K is an antichain, Kolmogorov’s inequality applied to the martingale Mt˚ ´Mt˚

shows that

λpKq ď
Mt˚pxyq ´Mt˚pxyq

c´ a
ď

|I|

c´ a
.

Thus, overall,

λpGpIqq ď
´c

b

¯nI

`
|I|

c´ a
.

As mentioned above, by Remark 2.8 is suffices to choose C so that pc{bqnI is bounded
by a constant multiple of |I|. Since nI ě ´C log2p|I|q, we have

´c

b

¯nI

ď pc{bq´C log2p|I|q “ |I|´C log2pc{bq.

So we choose C “ ´1{ log2pc{bq and are done. �

5.2. Martingale convergence and full density. We use the following lemma
to lift Corollary 5.7 to full (non-dyadic) density.

Proposition 5.9. Let C Ď R be effectively closed, and let z P R be irrational. Then
C has density 1 at z ô C has dyadic density 1 at z and C ` 1{3 has dyadic density
1 at z ` 1{3.

Proof. ñ: Full density is translation-invariant. So, by hypothesis that C has
Lebesgue density 1 at z, C ` 1{3 has density 1 at z ` 1{3. Hence C has dyadic
density 1 at z and C ` 1{3 has dyadic density 1 at z ` 1{3.
ð: We rely on a geometric fact already used in [38]. For m P ω let Dm be the
collection of open intervals of the form

pk2´m, pk ` 1q2´mq

where k P Z. Let D1m be the set of intervals of the form I ´ 1{3 where I P Dm.

Fact 5.9.1. Let m ě 1. If I P Dm and J P D1m, then the distance between an
endpoint of I and an endpoint of J is at least 1{p3 ¨ 2mq.

To see this, assume that |k2´m ´ pp2´m ´ 1{3q| ă 1{p3 ¨ 2mq for k, p P Z. This
yields |3k ´ 3p` 2m| ă 1, and hence 3|2m (or 2m “ 0), a contradiction.
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For every m ě 1, let Im be the unique interval in Dm which contains z, and let
I 1m be the unique interval in Dm which contains z`1{3. Given ε ą 0, by hypothesis
we may choose m˚ P ω so that for each n ě m˚ we have

2n λpIn X Cq ě 1´ ε and 2n λpI 1n X pC ` 1{3qq ě 1´ ε.

Fix n ě m˚. Let Jn “ I 1n ´ 1{3, so In P Dn and Jn P D1n. Then z P In X Jn and
λppInYJnqXCq ě p1´εq|InYJn| (to see this, note that for interval L, λpLXCq{λL
is the slope of the function x Ñ λprv, xs X Cq at L, where v ă minL; the slope at
the interval I Y J is at least the minimum of the slopes at I and at J).

Suppose that K is an open interval containing z such that |K| ă 2´m
˚
´2. Find

n ě m˚ such that 2´n´3 ă |K| ď 2´n´2. Fact 5.9.1 shows that the distance of z
to either endpoint of In Y Jn is greater than 2´n{3, and so K Ď In Y Jn. However,
|K| ą 2´n{8 ą |In Y Jn|{16, and so

λpK X Cq
|K|

ě
λppIn Y Jnq X Cq

|K|
´
|In Y Jn| ´ |K|

|K|
ě

p1´ εq|In Y Jn|

|K|
´
|In Y Jn|

|K|
` 1 ě 1´ 16ε. �

As a corollary we obtain Theorem 1.3:

Theorem 1.3. Every Oberwolfach random set is a density-one point.

Proof. In view of Proposition 5.9, it suffices to show that if z P R is Oberwolfach
random, then so is z`1{3. If xUny is a left-c.e. bounded test which captures z`1{3,
then

xUn ´ 1{3y “ xtx´ 1{3 : x P Unuy
is a left-c.e. bounded test which captures z. �

6. Oberwolfach randomness and differentiability

A classic result of Lebesgue states that every non-decreasing function f : r0, 1s Ñ
R is differentiable almost everywhere. As mentioned above, almost-everywhere
theorems invite effectivization. In this case, for a given class F of effective non-
decreasing functions, we ask how random must a real z be so that every function in
F is differentiable at z. For example, Brattka, Miller and Nies [5] studied the case
that F is the class of non-decreasing computable functions (which, for continuous
non-decreasing functions, coincides with the class of functions f mapping a rational
number q to a computable real, uniformly in q). They showed that the randomness
notion corresponding to this effective version of the differentiability theorem is
computable randomness, a notion properly implied by Martin-Löf randomness.

Here we consider the larger class F of interval-c.e. functions. We observe that
the corresponding randomness notion — the collection of reals z at which every
interval-c.e. function is differentiable — implies ML-randomness; indeed, it implies
that every left-c.e. martingale converges on the binary expansion of z. However, a
short and direct argument, avoiding Proposition 5.9, shows that each such point
is a density-one point. We then show that Oberwolfach randomness implies this
randomness property. This gives us a modified proof of Theorem 1.3.

6.1. Interval-c.e. functions. Recall that a function f : r0, 1s Ñ R is lower semi-
continuous if for every q P R, the inverse image f´1pq,8q is open. Upper semicon-
tinuity is defined analogously, with f´1p´8, qq being open instead.

The effective version of lower semicontinuity is lower semicomputability. A func-
tion f : r0, 1s Ñ R is lower semicomputable if for every rational number q, f´1pq,8q
is effectively open, uniformly in q. A function f is lower semi-computable if and only
if it has an approximation from below; an increasing computable sequence xfsysăω
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of rational-valued step functions – linear combinations of characteristic functions
of rational intervals – such that f “ lims fs pointwise. The notion of upper semi-
computable functions is defined analogously; a function f is lower semicomputable
if and only if ´f is upper semicomputable.

Lower semi-continuous functions to the extended real line can be used, for exam-
ple, to characterise Martin-Löf randomness, via so called “integral tests” [52, 21]:
z P r0, 1s is ML-random if and only if for every integrable lower semicomputable
function f : r0, 1s Ñ r0,8s we have fpzq ă 8. When f is universal among the in-
tegral tests, fpzq can be thought of as the “randomness deficiency” of z, analogous
to the index of the least component of a universal ML-test omitting z.

Identifying the variations of computable functions, Freer, Kjos-Hanssen, Nies
and Stephan [20] studied a class of monotone, continuous, lower semicomutable
functions which they called interval-c.e.

Let g : r0, 1s Ñ R. For 0 ď x ă y ď 1 define the variation of g in rx, ys by

V pg, rx, ysq “ sup

#

n´1
ÿ

i“1

ˇ

ˇgpti`1q ´ gptiq
ˇ

ˇ : x ď t1 ď t2 ď . . . ď tn ď y

+

.

The function g is of bounded variation if V pg, r0, 1sq is finite. If g is a contin-
uous function of bounded variation then the function fpxq “ V pg, r0, xsq is also
continuous. If g is computable then the function fpxq “ V pg, r0, xsq is lower semi-
computable (but may fail to be computable). A further property of this “variation
function” comes from the observation that V pg, rx, ysq ` V pg, ry, zsq “ V pg, rx, zsq
for x ă y ă z (see [4, Prop. 5.2.2]).

Definition 6.1. A non-decreasing, lower semicontinuous function f : r0, 1s Ñ R is
interval-c.e. if fp0q “ 0, and fpyq ´ fpxq is a left-c.e. real, uniformly in rationals
x ă y.

Thus, the variation function of each computable function of bounded variation
is interval-c.e. Freer et al. [20], together with Rute, showed that conversely, every
continuous interval-c.e. function is the variation of a computable function.

Note that if the assumption of lower semicontinuity is dropped from Defini-
tion 6.1 then we obtain an uncountable class of functions; if an interval-c.e. function
f is discontinuous at an irrational point a, then changing the value of fpaq to any
number between limxÑa´ fpxq and limxÑa` fpaq results in a function in that class.
We mention that nonetheless, the differentiability results in this section all hold for
this wider class of functions.

On the other hand, once we require lower semicontinuity, we see that every
interval-c.e. function is lower semicomputable: fpxq ą q if and only if there is some
rational number r ă x such that fprq ´ fp0q ą q, and this is an effectively open
condition.

A simple example of a continuous interval-c.e. function is the function fpxq “
λ pU X r0, xqq, where U Ď r0, 1s is effectively open: fpyq ´ fpxq “ λpU X px, yqq is
the measure of a uniformly given, effectively open set, and so is uniformly a left
c.e. real.

6.1.1. Measures and martingales. In general, the non-decreasing and lower semi-
continuous functions f : r0, 1s Ñ R with fp0q “ 0 correspond to Borel measures
µ on r0, 1q by letting fµpxq “ µpr0, xqq; in the other direction, given f , we let µf
be the measure generated by letting µf prx, yqq “ fpyq ´ fpxq. The measure µf is
atomless if and only if f is continuous.

Recall that a martingale M is atomless if the measure µM on 2ω generated by
letting µM prσsq “ 2´|σ|Mpσq has no atoms; that is, if for all X P 2ω, MpX ænq “
op2nq.
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There is a correspondence between continuous interval-c.e. functions f and atom-
less left-c.e. martingales M . Given a continuous interval-c.e. function f we define
the martingale Mf by letting Mf pσq “ µf pΘrσsq “ fp0.σ1q ´ fp0.σ0q (see Re-
mark 2.1 for the definition of the near-isomorphism Θ). In the other direction,
given M , by pushing forward by Θ, we identify µM and Θ˚µM and so view µM as
a measure on r0, 1s. The corresponding function, denoted by fM , turns out to be
interval-c.e.: µM prx, ysq is the supremum of µM pAq, where A is a finite union of
dyadic intervals contained in rx, ys.

6.2. Characterizing ML-randomness via the existence of the upper deriv-
ative. Using a result of [20] and a combinatorial lemma in [5], we will characterize
Martin-Löf randomness of a real z by the condition that all interval-c.e. functions
have a finite upper derivative at z.

We introduce some convenient notation. Let f : r0, 1s Ñ R. For reals x ă y we
let

∆f px, yq “ fpyq ´ fpxq

and let

Sf px, yq “
fpyq ´ fpxq

y ´ x

denote the slope of f between x and y. Sometimes we write ∆f pIq and Sf pIq to
denote ∆f px, yq and Sf px, yq where I “ px, yq. Below, it is sometimes important
that we work with open intervals.

In this section and below, we make use of the notion of pp, qq-intervals. For
rational numbers p ą 0 and q, we call an image of a basic dyadic interval under the
map y ÞÑ py ` q a pp, qq-interval. That is, the pp, qq-intervals in R are the intervals
whose closure is of the form rp ¨m2´n ` q, p ¨ pm` 1q2´n ` qs for some n ě 0 and
m P Z. As is shown in [5], pp, qq-intervals allow us to reduce analytic questions on
the real line to arguments in the relatively simple setting of Cantor space. For a
set L of rational numbers, an L-interval is a pp, qq-interval for some p, q P L.

The main combinatorial lemma concerning pp, qq-intervals is Lemma 4.2 from [5]:

Lemma 6.2. For any real α ą 1 there is a finite set L of rationals as follows:
for every interval A Ă R there are L-intervals B and C such that

‚ A Ă B and |B|{|A| ă α;
‚ C Ă A and |A|{|C| ă α.

Let f : r0, 1s Ñ R and z P r0, 1s. In the notation introduced above,

Dfpzq “ lim sup
hÑ0

Sf pz, z ` hq

and

Dfpzq “ lim inf
hÑ0

Sf pz, z ` hq,

where of course if h ă 0 then pz, z ` hq “ pz ` h, zq.
Since z may be noncomputable, we need to approximate these quantities by

looking at rational intervals close to z. Even this may be too complicated, for
example when we want to capture non-differentiability by martingales. We prefer
to work with pp, qq intervals. Slightly modifying notation from [5], for shorthand
we let

Dpp,qqf pzq “ lim sup
|A|Ñ0

Sf pAq vA is a pp, qq-interval and z P Aw,

and

Dpp,qqf pzq “ lim inf
|A|Ñ0

Sf pAq vA is a pp, qq-interval and z P Aw.

The following lemma is related to Lemma 4.3 in [5].



COHERENT RANDOMNESS TESTS AND COMPUTING THE K-TRIVIAL SETS 29

Lemma 6.3. Let f : r0, 1s Ñ R be nondecreasing. Let z P r0, 1s, and suppose that
Dfpzq “ 8. Then there are rationals p ą 0 and q such that Dpp,qqfpzq “ 8.

Proof. Find a finite set L given by Lemma 6.2 for α “ 2. Let h ą 0, and let A be
either rx, x ` hs or rx ´ h, xs. Find an L-interval B with A Ă B and |B| ă 2|A|.
Then Sf pBq ě Sf pAq{2. Since L is finite, the pigeonhole principle, applied as

hÑ 0, gives a single pair pp, qq from L which witnesses that Dpp,qqfpzq “ 8. �

Theorem 6.4. Let z P r0, 1s. Then z is ML-random ô

Dfpzq ă 8 for each interval-c.e. function f .

Proof. (ð) Let U be a universal prefix-free machine (see for instance [41, Chapter
2]); we assume that U outputs rational numbers. Freer et al. [20, Prop 2.6] show
that the function fUpxq “ λrtσ : Upσq ă xusă is interval-c.e., and that DfUpzq ă 8
implies that z is ML-random.

(ñ) Suppose that f is interval c.e. and Dfpzq “ 8. Applying Lemma 6.3, let
p ą 0 and q be rationals such that Dpp,qqfpzq “ 8. If z is on the boundary of
some pp, qq-interval, then z is rational and so not Martin-Löf random. So we may
assume that z is in the interior of any pp, qq-interval which contains it.

Define the Σ0
1 set Unxsy as follows: enumerate into Un all open pp, qq-intervals A

such that Sf pAq ą 2n (by our earlier argument, open intervals will suffice). This
is indeed a Σ0

1 set since the real Sf pAq is left-c.e. uniformly in A. Let Un be
the set of maximal (with respect to inclusion) pp, qq-intervals enumerated into Un.
Importantly, these are disjoint. Let µf be the measure defined on intervals by
µf prx, ysq “ fpyq ´ fpxq. Then we have

λpUnq “
ÿ

APUn

λpAq “
ÿ

APUn

µf pAq{Sf pAq ď 2´n
ÿ

APUn

µf pAq ď fp1q ¨ 2´n,

with the last inequality coming from the fact that the elements of Un are pairwise
disjoint. Since by construction each Un contains z, we conclude that z is not
Martin-Löf random. �

The direction (ð) of Theorem 6.4 has an alternative proof based on the following
two facts of interest on their own. We obtain connections between differentiability
and martingale convergence.

Proposition 6.5. Let M be an atomless left-c.e. martingale, and let fM be the
corresponding interval-c.e. function (from Subsection 6.1.1). Let X P 2ω and let x
be the real with binary expansion X.

(1) If M succeeds on X then DfM pxq “ 8.
(2) If fM is differentiable at x then M converges on X.

Proof. Let τ ă X and let I “ Θrrτ ss “ ra, bs; so a ď x ď b. We have Mpτq “ Sf pIq,
and

mintSf pa, xq, Sf px, bqu ď Sf pIq ď maxtSf pa, xq, Sf px, bqu

(see [5, Fact 2.4]). �

A universal left-c.e. martingale introduced by Stephan is atomless. For a string
τ , let Eτ be the martingale which starts with 1, doubles its capital along τ , and
then rests. So Eτ pσq “ 0 if τ and σ are incomparable; for n ď |τ |, Eτ pτ ænq “ 2n;
and Eτ pσq “ 2|τ | for σ extending τ . Stephan [50] showed that the martingale
M “

ř

τ 2´KpτqEτ is universal (also see [41, Thm. 7.2.8]). In [24] it is shown that
Stephan’s martingale is atomless.
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Now (ð) of Theorem 6.4 can be proved as follows. Suppose that z P r0, 1s is not
ML-random, and let Z be a binary expansion of z. Then Z is not ML-random, and
so Stephan’s martingale succeeds on M . By Proposition 6.5, DfM pzq “ 8. Indeed,
since fM is continuous, we obtain the following strengthening of Theorem 6.4:

Corollary 6.6. The following are equivalent for z P r0, 1s:

(1) z is ML-random.
(2) Dfpzq ă 8 for every interval-c.e. function f .
(3) Dfpzq ă 8 for every continuous interval-c.e. function f .

6.3. Being a point of differentiability of every interval-c.e. function. In
the introduction we discussed the program of determining the randomness strength
needed to make effective versions of “almost-everywhere” theorems hold. A main
result in [5, Section 4] states that a real z is computably random iff (a) every non-
decreasing computable function g satisfies Dgpzq ă 8 iff (b) every nondecreasing
computable function f is differentiable at z. In our setting the effectiveness con-
dition is being interval c.e. The analog of (a) is equivalent to ML-randomness by
Theorem 6.4. In contrast, the analog of (b) is stronger than ML-randomness by
the following.

Proposition 6.7. Suppose that every continuous interval-c.e. function is differen-
tiable at z. Then the following hold.
(i) Every left-c.e. martingale converges on the binary expansion Z “ Θ´1pzq, and
so z is ML-random.
(ii) z is a density-one point.

Proof. (i) First, we note that if f is differentiable at z then Dfpzq ă 8, and
so we conclude that z is ML-random (Theorem 6.4). Suppose that some left-c.e.
martingale N does not converge on Z. Since tNpZ ænq : n ă ωu is bounded,
we can produce a bounded martingale M which does not converge on Z (when
Npσq exceeds a bound on NpZ ænq, stop betting). The martingale M is certainly
atomless. Proposition 6.5 shows that the continuous interval-c.e. function fM is
not differentiable at z.

(ii) We could combine (i) with the argument in the proof of Theorem 1.3. For a
direct proof, let P be an effectively closed set containing z. Let gpxq “ λpr0, xqszPq.
Then the function g is interval-c.e. and continuous (see Subsection 6.1.1). By
hypothesis, g1pzq exists. The differentiability of g at z implies that g1pzq is in fact
the limit, as |I| Ñ 0, of SgpIq for open intervals I containing z (see the proof of
Proposition 6.5). Hence, g1pzq is the density of r0, 1szP at z. Thus, we conclude
that the upper and lower density of P at z are the same. Since z P P and z is
ML-random, Proposition 5.4 says that the upper density of P at z is 1. Hence the
lower density of P at z is 1. �

We turn to the main task of this subsection.

Theorem 6.8. Let z be an Oberwolfach random real. Then every interval-c.e.
function is differentiable at z.

The proof of Theorem 6.8 is a more complex variant of the proof of Theorem 5.6.
For an interval-c.e. function f and an Oberwolfach random real z, we need to show
that the upper and lower derivatives of f at z are finite and equal. Finiteness
follows from Theorem 6.4. If Dfpzq ă Dfpzq then we want to capture z by an
interval test with associated left-c.e. real fp1q; this will be done by enumerating
intervals on which we observe long oscillations of the slope Sf .

We note two new problems.



COHERENT RANDOMNESS TESTS AND COMPUTING THE K-TRIVIAL SETS 31

1. We have no access to z directly, and so cannot measure the slopes Sf pz, z ` hq
which presumably oscillate beyond two rationals values. We may assume though
that f is continuous at z, and so we can find oscillations in Sf pIq for rational
intervals I containing z. Even this, though, is insufficient for finding the bound on
the measure of GpIqbad. In the analogous calculation in the proof of Theorem 5.6,
we made use of the antichain K of minimal strings on which M rises from a to c;
in the current proof this will be a set of intervals on which the slope grows from a
to c. But we may have two overlapping intervals of this kind, where the union is
not so. As in the proof of Theorem 6.4, we want to mimic the structure of Cantor
space. This is again done with the aid of pp, qq-intervals.

2. The previous argument, in particular bounding the measure of GpIqbad, relied
on the existence of a nice effective approximation for the martingale M , namely
the increasing sequence of rational-valued martingales Mt. There may be no full
analogue of this approximation for the function f . Even though Sf px, yq is left-c.e.,
uniformly in rationals x and y, the stage t approximations to these values need not
be coherent with each other. There may be no computable sequence of functions
ft increasing to f such that ft is defined on all rational numbers and ∆ftpx, yq is
non-decreasing for all rationals x ă y. We restrict ourselves to partially defined
approximating functions.

Let Q0 Ă Q1 Ă Q2 Ă . . . be an increasing computable sequence of finite sets
whose union is QXr0, 1s; we assume that 0, 1 P Q0. For rationals x ă y let xαx,yt ytăω
be a computable increasing sequence of rational numbers whose limit is ∆f px, yq.
For t ă ω and x P Qt, we let

ftpxq “ max
m
ÿ

i“1

α
xi´1,xi

t v0 “ x0 ă x1 ă ¨ ¨ ¨ ă xm “ x are in Qtw.

We extend the slope notation to SftpIq, where I is an interval with endpoints in Qt.

‚ For any rational x, xftpxqyxPQt
is a non-decreasing sequence of rationals

which converges to fpxq.
‚ For any interval I with endpoints in Qt, SftpIq ď Sft`1

pIq.

To tackle issue (1) above, we invoke Lemma 4.3 of [5].

Lemma 6.9. Suppose f : r0, 1s Ñ R is nondecreasing and continuous at z P r0, 1s,
but that Dfpzq ă Dfpzq. Then there are pairs of rationals pp, qq and pr, sq such
that Dpr,sqfpzq ă Dpp,qqfpzq.

We need to define oscillations in the context of the functions ft and f . Let g
be a partial function from r0, 1s to R (we will use g “ ft for various stages t).
Fixing parameters, pairs pp, qq and pr, sq, rationals a ă b, and n ă ω, we let
On “ Onpg, a, bq “ Onpg, a, b; r, s, p, qq be the set of real numbers z P p0, 1q for
which there is a sequence of open intervals I1 Ą J1 Ą I2 Ą J2 Ą ¨ ¨ ¨ Ą In Ą Jn such
that z P Jk and for all k “ 1, . . . , n,

‚ Ik is an pr, sq-interval with endpoints in dom g and SgpIkq ă a; and
‚ Jk is a pp, qq-interval with endpoints in dom g and SgpJkq ą b.

We note that On is open; it is the union of intervals which appear as Jk in such an
oscillating sequence.

We again have to bound the measure of all truly oscillating sequences. This is
a calculation which is classical (it contains no consideration of effectiveness). The
calculation is very similar to that proving Lemma 5.8.

Lemma 6.10. λpOnpg, a, bqq ď pa{bq
n.
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Proof. Shortest strings correspond to maximal intervals. Here Un is a set of pair-
wise disjoint pr, sq-intervals and Vn is a set of pairwise disjoint pp, qq-intervals. All
intervals mentioned have endpoints in dom g. Vn refines Un (in the sense that ev-
ery interval in Vn is contained in an interval in Un) and Un`1 refines Vn. We let
V´1 “ p0, 1q. Given Vn, we let Un`1 be the collection of maximal pr, sq-intervals I
contained in some interval in Vn such that SgpIq ă a. Given Un, we let Vn be the
collection of maximal pp, qq-intervals J contained in some interval in Vn such that
SgpJq ą b. By the same process of “maximisation”, we observe that On is generated
by Vn, and by induction show that λpOnq ď pa{bq

n. Instead of using Kolmogorov’s
inequality, we note that if SgpIq ă a and V is a collection of pairwise-disjoint in-
tervals J Ď I with SgpJq ą b then λp

Ť

V q ď |I| ¨ pa{bq. To see why, observe that
for any finite V 1 Ď V we have ∆gpIq ě

ř

JPV 1 ∆gpJq. �

Proof of Theorem 6.8. Let f : r0, 1s Ñ R be interval-c.e. Suppose that f is not
differentiable at z. We show that z is not Oberwolfach random. If Dfpzq “ 8 then
z is not ML-random (Theorem 6.4), and so certainly not Oberwolfach random. So
we may assume that the upper and lower derivatives Dfpzq and Dfpzq are both
finite and that Dfpzq ă Dfpzq. Since f is non-decreasing and Dfpzq ă 8, we
conclude that f is continuous at z (in fact, in [24] it is shown that every point of
discontinuity of an interval-c.e. function is computable). By Lemma 6.9, there are
pairs pr, sq and pp, qq, and rationals a ă b, such that

Dpr,sqfpzq ă a ă b ă Dpp,qqfpzq.

We note that if I is any open interval and z P I is irrational, then z P J for some
open pp, qq-subinterval J of I (and similarly for pr, sq). Since we may assume that z
is irrational, we see that for every n, z P Onpf, a, bq (from now we fix the parameters
r, s, p, q and do not mention them again). We fix an approximation xfty to f as
described in (2) above. We note that for all n, for almost all t, z P Onpft, a, bq.

After applying a rational scaling factor to f , we may assume that fp1q ă 1.
We define an interval test associated with the left-c.e. real fp1q. Again let C “

´1{ log2pc{bq. For an interval I Ď r0, 1s, we let nI “ 1` tC ¨ p´ log2 |I|qu and define

GpIq “
ď

OnI
pft, a, bq vftp1q P Iw.

If fp1q P GpIq then z P GpIq so pG, fp1qq captures z. It remains to show that G is
an interval array.

The argument follows that of the proof of Theorem 5.6. The proof that G
respects inclusion is verbatim. To bound the measure of GpIq, we again separate
to good and bad parts; we again let T “ T pIq be the interval (or ray) of stages t
such that ftp1q P I, c “ pa` bq{2, GpIqbad “ GpIqzOnI

pfsupT , c, bq and GpIqgood “

GpIq X OnI
pfsupT , c, bq. We use Lemma 6.10 to see that λpGpIqgoodq ď pc{bqnI

which is bounded by |I| by the choice of C and nI .
Let t˚ “ supT and t˚ “ minT . We note that GpIqbad is contained in the

union of pr, sq-intervals J such that for some t P rt˚, t
˚q, J ’s endpoints lie in Qt

and SftpJq ă a but Sft˚ pJq ě c. We let K be the set of maximal such intervals;

the intervals in K are pairwise disjoint, and GpIqbad Ď K where K is the open set
generated by K. We again want to show that λpKq ď pft˚p1q ´ ft˚p1qq{pc ´ aq,
but the fact that intervals in K may not have endpoints in Qt˚ makes our life a bit
harder.

Claim 6.10.1. Let s ă ω, and let L be a finite set of pairwise disjoint intervals with
endpoints in Qs. For all t ě s,

ftp1q ´ fsp1q ě
ÿ

JPL

|J | ¨ pSftpJq ´ SfspJqq.
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Proof. Enumerate L as tJ1, J2, . . . , Jmu with Ji “ pxi, yiq and yi ď xi`1. For
i “ 1, . . . ,m we have ftpyiq ´ fspyiq ě pftpxiq ´ fspxiqq ` |Ji| ¨ pSftpJiq ´ SfspJiqq,
and we have ftpxi`1q ´ fspxi`1q ě ftpyiq ´ fspyiq. By induction, we see that

ftp1q ´ fsp1q ě ftpymq ´ fspymq ě
m
ÿ

i“1

|Ji| ¨ pSftpJiq ´ SfspJiqq

as required. �

Let K 1 Ď K be finite. For each J P K 1, let tpJq be the least stage t P rt˚, t
˚q

such that the endpoints of J are in Qt. For t P rt˚, t
˚q, let Kt be the set of intervals

J P K 1 with tpJq ď t. Claim 6.10.1 tells us that for each t,

ft`1p1q ´ ftp1q ě
ÿ

JPKt

|J | ¨ pSft`1
pJq ´ SftpJqq.

Summing for t P rt˚, t
˚q, we get

ft˚p1q ´ ft˚p1q ě
ÿ

JPK1

|J | ¨ pSft˚ pJq ´ SftpJqpJqq ě pc´ aq
ÿ

JPK1

|J |.

Taking larger and larger K 1 Ď K (if K is infinite) shows that

ft˚p1q ´ ft˚p1q ě λpKq ¨ pc´ aq
as required.

This concludes the proof. We remark again on the difference between this last
calculation and the corresponding one in the proof of Theorem 5.6. If we knew
that all the intervals in K had endpoints in Qt˚ , then we could take the function
ft˚ æQt˚

´ft˚ and build a martingale from the slopes of this function on pr, sq-

intervals; then, the inequality would follow from Kolmogorov’s inequality. This
is precisely where the absence of a “nice” approximation xfty (as in problem (2)
above) makes us work harder.

On the other hand, for Claim 6.10.1, we could have restricted ourselves to pr, sq-
intervals and used this approach. We preferred to give a direct proof which does
not pass through martingales. �
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[21] P. Gács. Uniform test of algorithmic randomness over a general space. Theoret. Comput. Sci.,

341(1-3):91–137, 2005.

[22] N. Greenberg, D. Hirschfeldt, and A. Nies. Characterizing the strongly jump traceable sets
via randomness. Submitted.

[23] N. Greenberg and A. Nies. Benign cost functions and lowness properties. J. Symbolic Logic,
76:289–312, 2011.

[24] N. Greenberg, R. Hölzl, A. Nies, and F. Stephan. Atoms of left-c.e. measures. In preparation.

[25] D. Hirschfeldt, A. Nies, and F. Stephan. Using random sets as oracles. J. Lond. Math. Soc.
(2), 75(3):610–622, 2007.

[26] B. Kjos-Hanssen. Low for random reals and positive-measure domination. Proc. Amer. Math.

Soc., 135(11):3703–3709, 2007.
[27] B. Kjos-Hanssen, W. Merkle, and F. Stephan. Kolmogorov complexity and the Recursion

Theorem. To appear in Trans. of the AMS, 2011.

[28] B. Kjos-Hanssen, J. Miller, and R. Solomon. Lowness notions, measure, and domination. J.
London Math. Soc. (2), 84, 2011.
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